【题目】已知函数,其中无理数.
(Ⅰ)若函数有两个极值点,求的取值范围;
(Ⅱ)若函数的极值点有三个,最小的记为,最大的记为,若的最大值为,求的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】分析:(Ⅰ)先对函数求导,构造,则函数有两个极值点等价于 有两个不等的正实根,对函数求导,然后对和进行讨论,可得函数的单调性,结合,即可求得的取值范围;(Ⅱ)对函数求导,由有三个极值点,则有三个零点,1为一个零点,其他两个则为的零点,结合(Ⅰ),可得的两个零点即为的最小和最大极值点,,即,令,由题知,则,令,利用导数研究函数的单调性,从而可求得的最小值即的最小值.
详解:(Ⅰ),
令,,
∵有两个极值点
∴ 有两个不等的正实根
∵
∴当时,,在上单调递增,不符合题意.
当时,当时,,当时,,
∴在上单调递减,在上单调递增.
又∵,当→时,→
∴
∴
综上,的取值范围是.
(Ⅱ).
∵有三个极值点
∴有三个零点,1为一个零点,其他两个则为的零点,由(Ⅰ)知.
∵
∴的两个零点即为的最小和最大极值点,,即.
∴
令,由题知.
∴,,
∴
令,,则,令,则.
∴在上单调递增
∴
∴在上单调递减
∴
故的最小值为.
科目:高中数学 来源: 题型:
【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用
A.一次函数B.二次函数
C.指数型函数D.对数型函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在吸烟与患肺病是否相关的判断中,有下面的说法:
(1)从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有的可能性使得推断错误.
(2)从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有的可能患有肺病;
(3)若,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
其中说法正确的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,如果存在实数使得,那么称为的生成函数.
(1)函数,是否为的生成函数?说明理由;
(2)设,,当时生成函数,求的对称中心(不必证明);
(3)设,,取,,生成函数,若函数的最小值是5,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=-2sin2x+sin 2x+1,给出下列四个命题:
①在区间上是减函数;
②直线是函数图象的一条对称轴;
③函数f(x)的图象可由函数的图象向左平移而得到;
④若,则f(x)的值域是.
其中正确命题序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-aln x(a∈R).
(1)若f(x)在x=2处取得极值,求a的值;
(2)求f(x)的单调区间;
(3)求证:当x>1时, x2+ln x<x3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集具有性质;对任意的、,,与两数中至少有一个属于.
(1)分别判断数集与是否具有性质,并说明理由;
(2)证明:,且;
(3)当时,若,求集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com