精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则cosAcosB=( )
A.
B.
C.
D.

【答案】A
【解析】解:由A,B,C成等差数列,有2B=A+C(1)
∵A,B,C为△ABC的内角,∴A+B+C=π(2).
由(1)(2)得B=
由2a,2b,2c成等比数列,得b2=ac,
由余弦定理得,b2=a2+c2﹣2accosB
把B= 、b2=ac代入得,a2+c2﹣ac=ac,
即(a﹣c)2=0,则a=c,从而A=C=B=
∴cosAcosB= =
故选A.
先根据A,B,C成等差数列和三角形内角和定理求出B的值,根据等比中项的性质可知b2=ac代入余弦定理求得a2+c2﹣ac=ac,整理求得a=c,即得A=C,最后利用三角形内角和定理求出A和C,最后求出式子的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占,他们在本学期期末考试中的物理成绩(满分100分)如下面的频率分布直方图:

(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值).

(2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量,

①补充下面的列联表:

物理成绩优秀

物理成绩不优秀

合计

对此事关注

对此事不关注

合计

②是否有以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有教职工500人,对他们进行年龄状况和受教育程度的调查,其结果如下:

高中

专科

本科

研究生

合计

35岁以下

10

150

50

35

245

35﹣50

20

100

20

13

153

50岁以上

30

60

10

2

102

随机的抽取一人,求下列事件的概率:
(1)50岁以上具有专科或专科以上学历;
(2)具有本科学历;
(3)不具有研究生学历.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin(2x+ )cos(x﹣ )+cos(2x+ )sin( ﹣x)的图象的一条对称轴方程是(
A.x=
B.x=
C.x=π
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x,y满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为10,则a2+b2的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知数列{an}的前n项和Sn= ,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=2an+(﹣1)nan , 求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记关于x的不等式 的解集为P,不等式|x+2|<3的解集为Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(t)= ,g(x)=cosxf(sinx)﹣sinxf(cosx),x∈(π, ).
(1)求函数g(x)的值域;
(2)若函数y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在区间[ ,π]上为增函数,求实数ω的取值范围.

查看答案和解析>>

同步练习册答案