精英家教网 > 高中数学 > 题目详情
三棱锥S-ABC中,侧棱SA,SB,SC两两垂直,△SAB,△SBC,△SAC面积分别为1,
32
,3,则此三棱锥外接球表面积为
14π
14π
分析:根据三角形面积公式,解方程组得SA=2,SB=1,SC=3,进而算出以SA、SB、SC为长、宽、高的长方体的对角线长为
14
,从而得到三棱锥外接球R=
14
2
,最后用球的表面积公式,可得此三棱锥外接球表面积.
解答:解:设SA=x,SB=y,SC=z,则
因为△SAB,△SBC,△SAC都是以S为直角顶点的直角三角形,得
1
2
xy=1
1
2
yz=
3
2
1
2
zx=3

解之得:x=2,y=1,z=3即SA=2,SB=1,SC=3,
∵侧棱SA,SB,SC两两垂直,
∴以SA、SB、SC为过同一顶点的3条棱作长方体,该长方体的对角线长为
SA2+SB2+SC2
=
14
,恰好等于三棱锥外接球的直径
由此可得外接球的半径R=
14
2
得此三棱锥外接球表面积为S=4πR2=14π
故答案为:14π
点评:本题给出特殊三棱锥,求它的外接球表面积,着重考查了空间垂直关系的性质和多面体的外接球等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥S-ABC中∠ACB=90°,SA⊥面ABC,AC=2,BC=
13
SB=
29

(1)证明SC⊥BC.
(2)求侧面SBC与底面ABC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分别为AB,SB的中点.
(1)证明:AC⊥SB;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,△ABC是边长为8的正三角形,SA=SC=2
7
,二面角S-AC-B的大小为60°
(1)求证:AC⊥SB;
(2)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步练习册答案