精英家教网 > 高中数学 > 题目详情
18.已知$\frac{1}{3}$≤a≤1,若函数f(x)=ax2-2x在[1,3]上的最大值为M(a),最小值为N(a)
(1)求N(a)的表达式;
(2)求M(a)的表达式并说出其最值.

分析 (1)根据二次函数的性质求出函数的最小值即N(a)的表达式即可;
(2)求出函数f(x)的最大值即M(a)的表达式,从而求出M(a)的最值即可.

解答 解:(1)f(x)=a(${(x-\frac{1}{a})}^{2}$-$\frac{1}{a}$,
∵$\frac{1}{3}$≤a≤1,∴1≤$\frac{1}{a}$≤3,
因为x在[1,3]范围内,所以当x=$\frac{1}{a}$时,函数f(x)取得最小值,
即N(a)=f($\frac{1}{a}$)=-$\frac{1}{a}$;
(2)当1≤$\frac{1}{a}$≤2,即$\frac{1}{2}$≤a≤1时,
则x=3时,函数f(x)取得最大值;
∴M(a)=f(3)=9a-6,
当2<$\frac{1}{a}$≤3,即$\frac{1}{3}$≤a<$\frac{1}{2}$时,
则x=1时,函数f(x)取得最大值;
∴M(a)=f(1)=a-2,
综上,得M(a)=$\left\{\begin{array}{l}{a-2,\frac{1}{3}≤a<\frac{1}{2}}\\{9a-6,\frac{1}{2}≤a≤1}\end{array}\right.$,
故M(a)的最小值为-$\frac{5}{3}$;最大值为3.

点评 本题考查了函数的单调性、最值问题,考查二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2017=(  )
A.21010-1B.21010-3C.3•21008-1D.21009-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在数列{an}中,若${a_1}=1,{a_{n+1}}=2{a_n}+3({n∈{N^*}})$,则数列的通项公式是an=2n+1-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若抛物线C1:y2=2px的准线为x=-1,椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线C1的焦点重合,且以原点为圆心,椭圆C2的短半轴长为半径的圆与直线y=x+$\sqrt{2}$相切.
(1)求椭圆C2的离心率;
(2)若0为坐标原点,过点(2,0)的直线l与椭圆C2相交于不同两点A、B,且椭圆C2上一点E满足t$\overrightarrow{OE}$-$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{0}$,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用数学归纳法证明:(1+α)n≥1+nα(其中α>-1,n是正整数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A为椭圆$\left\{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}\right.$ (θ为参数)上任意一点,点B为圆(x-1)2+y2=1 上任意一点,则|AB|的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A、B、C所对的边分别为a,b,c,且A=3C,c=6,(2a-c)cosB-bcosC=0,则△ABC的面积是$18\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各曲线的标准方程
(1)长轴长为12,离心率为$\frac{2}{3}$,焦点在x轴上的椭圆;
(2)过点A$(\frac{{\sqrt{6}}}{3},\sqrt{3})$和 B$(\frac{{2\sqrt{2}}}{3},1)$的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列说法:
(1)y=tanx既是奇函数,也是增函数
(2)y=2${\;}^{-{x}^{2}+2x}$的值域为(-∞,2].
(3)若y=f(2x)的定义域为[1,2],则y=f(x-1)的定义域为[3,5].
(4)全集U={(x,y)|x,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},N={(x,y)|y-3=x-2},则(∁UM)∩N={(2,3)}.
(5)方程3sin$\frac{π}{2}x={log_{\frac{1}{2}}}$x有3个实数根.
(6)函数y=lgsin($\frac{π}{3}$-2x)的单调递增区间为(kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$),(k∈Z).
以上正确的说法有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案