精英家教网 > 高中数学 > 题目详情
如图,在菱形ABCD中,∠DAB=60°,E是AB的中点,MA⊥平面ABCD,且在矩形ADNM中,AD=2,AM=
3
7
7

(1)求证:AC⊥BN;
(2)求证:AN∥平面MEC;
(3)求二面角M-EC-D的大小.
分析:(1)通过连接BD,证明AC⊥平面NDB,利用BN?平面NDB,从而证明AC⊥BN;
(2)利用CM与BN交于F,连接EF.证明AN∥EF,通过直线与平面平行的判定定理证明AN∥平面MEC;
(3)通过建立空间直角坐标系,求出相关点的坐标,设平面MEC的法向量为
n
=(x,y,z).利用
CE
•n=0
EM
•n=0.
求出向量
n
,求出平面ADE的法向量
m
,利用cosθ=
m
n
|
m
||
n
|
,求出二面角M-EC-D的大小.
解答:(共14分)
解:(1)证明:连接BD,则AC⊥BD.
由已知DN⊥平面ABCD,
因为DN∩DB=D,
所以AC⊥平面NDB.…(2分)
又因为BN?平面NDB,
所以AC⊥BN.…(4分)
(2)CM与BN交于F,连接EF.
由已知可得四边形BCNM是平行四边形,
所以F是BN的中点.
因为E是AB的中点,
所以AN∥EF.…(7分)
又EF?平面MEC,AN?平面MEC,
所以AN∥平面MEC.…(9分)
(3)由于四边形ABCD是菱形,E是AB的中点,可得DE⊥AB.
如图建立空间直角坐标系D-xyz,则D(0,0,0),E(
3
,0,0)
,C(0,2,0),
M(
3
,-1,
3
7
7
)
.
CE
=(
3
,-2.0)
EM
=(0,-1,
3
7
7
)
.…(10分)
EM
=(0,-1,
3
7
7
)

设平面MEC的法向量为
n
=(x,y,z).
CE
•n=0
EM
•n=0.

所以
3
x-2y=0
y-
3
7
7
z=0.

令x=2.
所以
n
=(2,
3
21
3
)
.…(12分),
又平面ADE的法向量
m
=(0,0,1),
所以.cos<
m
n
>=
m
n
|
m
||
n
|
=
1
2

 所以二面角M-EC-D的大小是60°.…(14分)
点评:本题考查直线与平面垂直的性质,直线与平面平行的判断,二面角的求法,考查空间想象能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,且PA=AB=2,E、F分别是AB与PD的中点.
(Ⅰ)求证:PC⊥BD;
(Ⅱ)求证:AF∥平面PEC;
(Ⅲ)求二面角P-EC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在菱形ABCD中,MA⊥平面ABCD,且四边形ADNM是平行四边形.
(1)求证:AC⊥BN;
(2)当点E在AB的什么位置时,使得AN∥平面MEC,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大丰市一模)如图,在菱形ABCD中,E是AB的中点,且DE⊥AB.
(1)求∠ABD的度数;
(2)若菱形的边长为2,求菱形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在菱形ABCD中,∠BAD=120°,点N为CD中点,PA⊥平面ABCD.
(I)求证:CD⊥平面PAN;
(II)若点M为PC中点,AB=1,PA=
3
,求直线AM与平面PCD所成角的正弦值.

查看答案和解析>>

同步练习册答案