精英家教网 > 高中数学 > 题目详情
设F1、F2分别是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,若双曲线右支上存在一点P,使|OP|=|OF1|(O为原点),且|PF1|=
3
|PF2|
,则双曲线的离心率为(  )
A.
3
-1
2
B.
3
-1
C.
3
+1
2
D.
3
+1
∵|OF1|=|OF2|=|OP|
∴∠F1PF2=90°
设|PF2|=t,则|F1P|=
3
t,a=
3
t-t
2

t2+3t2=4c2,则t=c
∴e=
c
a
=
3
+1
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年聊城期末理)设F1,F2分别是双 曲线的左、右焦点。若双曲线上存在点A,使,则双曲线的离心率为    (    )

       A.                   B.                 C.                  D.

查看答案和解析>>

同步练习册答案