精英家教网 > 高中数学 > 题目详情

【题目】如图,O为坐标原点,椭圆C1 + =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为e1;双曲线C2 =1的左、右焦点分别为F3 , F4 , 离心率为e2 , 已知e1e2= ,且|F2F4|= ﹣1.

(1)求C1、C2的方程;
(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.

【答案】
(1)解:由题意可知, ,且

∵e1e2= ,且|F2F4|= ﹣1.

,且

解得:

∴椭圆C1的方程为 ,双曲线C2的方程为


(2)解:由(1)可得F1(﹣1,0).

∵直线AB不垂直于y轴,

∴设AB的方程为x=ny﹣1,

联立 ,得(n2+2)y2﹣2ny﹣1=0.

设A(x1,y1),B(x2,y2),M(x0,y0),

= =

∵M在直线AB上,

直线PQ的方程为

联立 ,得

解得 ,代入

由2﹣n2>0,得﹣ <n<

∴P,Q的坐标分别为

则P,Q到AB的距离分别为:

∵P,Q在直线A,B的两端,

则四边形APBQ的面积S= |AB|

∴当n2=0,即n=0时,四边形APBQ面积取得最小值2.


【解析】(1)由斜率公式写出e1 , e2 , 把双曲线的焦点用含有a,b的代数式表示,结合已知条件列关于a,b的方程组求解a,b的值,则圆锥曲线方程可求;(2)设出AB所在直线方程,和椭圆方程联立后得到关于y的一元二次方程,由根与系数的关系得到AB中点M的坐标,并由椭圆的焦点弦公式求出AB的长度,写出PQ的方程,和双曲线联立后解出P,Q的坐标,由点到直线的距离公式分别求出P,Q到AB的距离,然后代入代入三角形面积公式得四边形APBQ的面积,再由关于n的函数的单调性求得最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的菱形中,,现沿对角线折起,折起后使的余弦值为

(1)求证:平面平面

(2)若的中点,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0. (Ⅰ)求证:对m∈R,直线l与圆C总有两个不同交点;
(Ⅱ)设l与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;
(Ⅲ)若定点P(1,1)分弦AB为 = ,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为 ,当 时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:,K2

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问5分,2小问7分

图,椭圆的左、右焦点分别为的直线交椭圆于两点,且

1求椭圆的标准方程

2求椭圆的离心率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形ABCD中,AB=CD且异面直线AB与CD所成的角为30°,E,F为BC和AD的中点,则异面直线EF和AB所成的角为(
A.15°
B.30°
C.45°或75°
D.15°或75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.

查看答案和解析>>

同步练习册答案