精英家教网 > 高中数学 > 题目详情
13.(1)设函数f(x)=2x+3,g(x+2)=f(x),求g(x)的表达式.
(2)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=-$\sqrt{x}$(1+x),求f(x)的解析式.

分析 (1)令x+2=t,则x=t-2,可得g(t)=f(t-2),即可得出.
(2)利用函数的奇偶性即可得出.

解答 解:(1)令x+2=t,则x=t-2,∴g(t)=f(t-2)=2(t-2)+3=2t-1,
把t换成x可得:g(x)=2x-1.
(2)设x<0,则-x>0,
∵当x>0时,f(x)=-$\sqrt{x}$(1+x),
∴f(-x)=-$\sqrt{-x}$(1-x),
又f(x)是定义在R上的奇函数,
∴f(0)=0,f(x)=-f(-x)=$\sqrt{-x}$(1-x).
∴f(x)=$\left\{\begin{array}{l}{-\sqrt{x}(1+x),x≥0}\\{\sqrt{-x}(1-x),x<0}\end{array}\right.$.

点评 本题考查了函数的奇偶性、“换元法”求函数的解析式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数y=f(x)的图象向左平移$\frac{π}{12}$单位,得到函数y=3sin 4x的图象,则f(x)的解析式是y=3sin(4x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知p:x2-12x+20<0,q:x2-2x+1-a2>0(a>0),若?p的充分不必要条件是?q,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax+7,f(-3)=5,则f(3)的值为(  )
A.9B.-9C.-5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知{an}是公差为正的等差数列,且a3a6=55,a2+a7=16.
(1)求数列{an}的通项公式;
(2)已知an=b1+$\frac{{b}_{2}}{3}$+$\frac{{b}_{3}}{5}$+…+$\frac{{b}_{n}}{2n-1}$(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知x<0,求函数$y=\frac{{{x^2}+x+1}}{x}$的最大值
(2)设x>-1,求函数$y=\frac{{({x+5})({x+2})}}{x+1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,已知a5+a7=8,则该数列前11项和S11=(  )
A.44B.55C.143D.176

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,底角∠ABE=45°的直角梯形ABCD,底边BC长为4cm,腰长AB为$2\sqrt{2}$cm,当一条垂直于底边BC的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BE=x,试写出阴影部分的面积y与x的函数关系式,并画出函数大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα=-$\frac{3}{5}$,且α为第四象限角,则tan(π-α)=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案