精英家教网 > 高中数学 > 题目详情
15.关于空间直角坐标系,下列叙述正确的是(  )
A.P(x,y,z)中x,y,z的位置可以互换的
B.空间直角坐标系中的点与一个三元有序数组是一种一一对应关系
C.空间直角坐标系中的三条坐标轴把空间分成八个部分
D.某点在不同空间直角坐标系中的坐标位置可以相同

分析 直接利用空间直角坐标系的性质判断即可.

解答 解:A选项,x,y,z的位置不可以互换的,故A不正确;
B选项,空间直角坐标系中的点与一个三元有序数组是一种一一对应关系,故B不正确;
选项C,空间直角坐标系中的三条坐标轴把空间分成八个部分,故C正确.
选项D,某点在不同空间直角坐标系中的坐标位置不可以相同,故D不正确;.
故选:C.

点评 本题考查空间直角坐标系的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在(1-2x)m的展开式中,第5项、第6项和第7项的二项式系数为等差数列,求展开式中的第2项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正项等差数列{an}满足a2+a4+a6=9,则log3(a1+$\frac{1}{2}{a}_{3}$+$\frac{1}{2}{a}_{5}$+a7)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log3(x+a),g(x)=log3(-x+2a-$\frac{1}{2}$),且f(4)-f(1)=1.
(1)求a的值;
(2)令F(x)=f(x)+g(x),判断函数F(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC中,a=4,b=5,A=30°.下列对三角形解的情况的判断中,正确的是(  )
A.一解B.两解C.无解D.一解或无解

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}满足an+1+an=2n-3,若a1=2,则a8-a4=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.编写一个程序,求使不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>10成立的最小自然数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平行六面体ABCD-A1B1C1D1中,M为AC与D的交点,若$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{a}$,$\overrightarrow{A{{\;}_{1}D}_{1}}$=$\overrightarrow{b}$,$\overrightarrow{{A}_{1}A}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}表示向量$\overrightarrow{{C}_{1}M}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在平面直角坐标系中,边长为an的一组正三角形AnBn-1Bn的底边Bn-1Bn依次排列在x轴上(B0与坐标原点重合).设{an}是首项为a,公差为d的等差数列,若所有正三角形顶点An在第一象限,且均落在抛物线y2=2px(p>0)上,则$\frac{a}{d}$的值为1.

查看答案和解析>>

同步练习册答案