精英家教网 > 高中数学 > 题目详情

(附加题)已知函数,且f(1)=f(2)=.(1)求;(2)判断fx)的奇偶性;(3)试判断函数在上的单调性,并证明;

(附加题)解:(1)由已知得:

              ,解得

(2)由上知.任取,则,所以为偶函数.

(3)可知上应为减函数.下面证明:

任取,且,则

,因为,且,所以,从而

, 故,由此得函数上为减函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

附加题:
已知函数f(x)=x3+ax2+
3
2
x+
3
2
a
(a为实数),
(1)求不等式f′(x)>
3
2
-ax
的解集;
(2)若f′(1)=0,①求函数的单调区间;②证明对任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<
5
16
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)已知函数f(x)=x2-2kx+k+1.
(Ⅰ)若函数在区间[1,2]上有最小值-5,求k的值.
(Ⅱ)若同时满足下列条件①函数f(x)在区间D上单调;②存在区间[a,b]⊆D使得f(x)在[a,b]上的值域也为[a,b];则称f(x)为区间D上的闭函数,试判断函数f(x)=x2-2kx+k+1是否为区间[k,+∞)上的闭函数?若是求出实数k的取值范围,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:已知函数f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)-
1
2
,(其中ω>0)
,且函数y=f(x)的图象相邻两条对称轴之间的距离为
π
2

(Ⅰ)求f(
π
6
)
的值;
(Ⅱ)若函数f(kx+
π
12
)(k>0)
在区间[-
π
6
π
3
]
上单调递增,求实数k的取值范围;
(III)是否存在实数m使方程3f2(x)-f(x)+m=0在(
π
12
π
3
]
内仅有一解,若存在,求出实数m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)已知函数f(x)=x2+px+q,对于任意θ∈R,有f(sinθ)≤0,且f(sinθ+2)≥0.
(1)求p、q之间的关系式;
(2)求p的取值范围;
(3)如果f(sinθ+2)的最大值是14,求p的值,并求此时f(sinθ)的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年河南省焦作市高一下学期数学必修4水平测试 题型:解答题

(附加题)(10分)已知函数的最大值是1,其图像经过点

(1)求的解析式;

(2)已知,且,求的值.

 

查看答案和解析>>

同步练习册答案