【题目】设函数的两个极值点分别为,若恒成立,则实数的取值范围是_______.
【答案】
【解析】
由函数有两个极值点分别为,可知不单调,利用导数求得的范围,运用韦达定理可得,作差,再由条件,结合恒成立思想,运用函数的单调性,构造函数,通过求导,判断单调性可得,即可得到的范围.
解:∵函数有两个极值点分别为,
的定义域为,
,
令,其判别式.
当时,在上单调递减,不合题意.
当时,的两根都小于零,在上,,则在上单调递减,不合题意.
当时,,设的两个根都大于零,
令,
当时,,当时,,当时,,
故分别在上单调递减,在上单调递增,
∴的取值范围是.
则,
,
.
若恒成立,则,
,
不妨设,则.
又,
记,
记,
在上单调递增,在上单调递减,
且易知.又,
∴当时,;当时,.
故由①式可得,,代入方程,
得,(在上递增).
又,
∴的取值范围是.
故答案为:.
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001)
附:①;
②,则;
③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病。为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如在的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(Ⅰ)请将右面的列联表补充完整;
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列以及数学期望.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式 其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教研机构随机抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成时,所作的频率分布直方图如图所示,则原始茎叶图可能是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的左右焦点分别为,,为坐标原点.为曲线右支上的点,点在外角平分线上,且.若恰为顶角为的等腰三角形,则该双曲线的离心率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古典乐器一般按“八音”分类.“八音”是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音.其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器,现从打击乐器、弹拨乐器中任取不同的‘两音’,含有弹拨乐器的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;
(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,倾斜角为的直线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于,两点,且,求直线的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com