精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足$\left\{\begin{array}{l}{4x-2y+1≥0}\\{x+y-2≤0}\\{x-4y-2≤0}\\{\;}\end{array}\right.$,则当$\frac{y+x}{x+1}$最小时,x=-$\frac{4}{7}$;y=-$\frac{9}{14}$.

分析 由$\frac{y+x}{x+1}$=$\frac{x+1+y-1}{x+1}$=1+$\frac{y-1}{x+1}$,设k=$\frac{y-1}{x+1}$,利用k的几何意义,利用数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域如图,
由$\frac{y+x}{x+1}$=$\frac{x+1+y-1}{x+1}$=1+$\frac{y-1}{x+1}$,
设k=$\frac{y-1}{x+1}$,则k的几何意义是区域内的点到定点(-1,1)的斜率,
由图象可知CD的斜率最小,
由$\left\{\begin{array}{l}{4x-2y+1=0}\\{x-4y-2=0}\end{array}\right.$得x=-$\frac{4}{7}$,y=-$\frac{9}{14}$,
故答案为:-$\frac{4}{7}$,-$\frac{9}{14}$.

点评 本题主要考查线性规划的应用,利用直线斜率和数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.直线x+m2y+6=0与直线(m-2)x+3my+2m=0平行,则实数m的值为(  )
A.m=0或m=3B.m=-1或m=3C.m=0或m=-1D.m=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时,f(x)=x3,则方程f(x-1)=cosπx(-2≤x≤4)所有实根的和为(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}满足:a1=1,a2=3,3an+2=2an+1+an,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若角α满足sinα-cosα=$\frac{\sqrt{2}}{2}$,则α=$\frac{5π}{12}+2kπ$或$\frac{13π}{12}+2kπ$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,内角A,B,C所对的边分别为a,b,c,且cosB=2sin($\frac{π}{4}$+B)•sin($\frac{π}{4}$-B).
(Ⅰ)求角B的大小;
(Ⅱ)若b=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;
(2)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
①求d,an
②若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆0:x2+y2=r2(r>0)与直线x+2y-5=0相切.
(1)求圆O的方程;
(2)若过点(-1,3)的直线l被圆0所截得的弦长为4,求直线1的方程;
(3)若过点A(0,$\sqrt{5}$)作两条斜率分别为k1,k2的直线交圆0于B、C两点,且k1k2=-$\frac{1}{2}$,求证:直线BC恒过定点.并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知1gx=1.7,1gy=3.4,则下列选项中与lg(x2+2y)最接近的一个值为(  )
A.3.4B.3.9C.5.1D.7.1

查看答案和解析>>

同步练习册答案