精英家教网 > 高中数学 > 题目详情

【题目】已知平面向量满足:||2||1

1)若(2)=1,求的值;

2)设向量的夹角为θ.若存在tR,使得,求cosθ的取值范围.

【答案】1-12cosθ[1][1]

【解析】

1)利用数量积的运算性质,结合数量积的定义进行求解即可;

2)对进行平方,然后根据平面向量的运算性质,结合数量积的定义、一元二次方程根的判别式、余弦函数的有界性进行求解即可.

1)若(2)=1,则1

又因为||2||1,所以421,所以1

2)若,则1

又因为||2||1,所以t2+2t+30,即t2+4tcosθ+30

所以△=16cos2θ12≥0,解得cosθθ

所以cosθ[1][1].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知ABC的顶点,则ABC的欧拉线方程为____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x0x0+是函数f(x)=cos2wx﹣sin2wx(ω>0)的两个相邻的零点

(1)求的值;

(2)若对任意,都有f(x)﹣m≤0,求实数m的取值范围.

(3)若关于的方程上有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,当时,,且对任意的实数恒成立,若数列满足)且,则下列结论成立的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扎比瓦卡是2018年俄罗斯世界杯足球赛吉祥物,该吉祥物以西伯利亚平原狼为蓝本.扎比瓦卡,俄语意为“进球者”.某厂生产“扎比瓦卡”的固定成本为15000元,每生产一件“扎比瓦卡”需要增加投入20元,根据初步测算,每个销售价格满足函数,其中x是“扎比瓦卡”的月产量(每月全部售完).

1)将利润表示为月产量的函数;

2)当月产量为何值时,该厂所获利润最大?最大利润是多少?(总收益=总成本+利润).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数fx)=Asinωx+φ)(ω0|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:

1)请将上表数据补充完整,并直接写出函数fx)的解析式;

2)将yfx)图象上所有点向左平移θθ0)个单位长度,得到ygx)的图象.ygx)图象的一个对称中心为(0),求θ的最小值.

3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形,四边形是梯形, 平面平面, 点的中点.

(1)求证:∥平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好在抛物线的准线上.

求椭圆的标准方程;

在椭圆上,是椭圆上位于直线两侧的动点运动时,满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

同步练习册答案