精英家教网 > 高中数学 > 题目详情
12.若方程|x-2|•(x+1)=k有三个不同的解,则常数k的取值范围为0<k<$\frac{9}{4}$.

分析 利用函数和方程之间的关系转化为两个函数的交点个数问题,结合一元二次函数的图象和性质是解决本题的关键.

解答 解:设f(x)=|x-2|•(x+1),
则当x≥2时,f(x)=(x-2)•(x+1)=x2-x-2=(x-$\frac{1}{2}$)2-$\frac{9}{4}$≥0,
当x<2时,f(x)=-(x-2)•(x+1)=-=(x-$\frac{1}{2}$)2+$\frac{9}{4}$≤$\frac{9}{4}$,
作出函数f(x)的图象如图:
若方程|x-2|•(x+1)=k有三个不同的解,
则0<k<$\frac{9}{4}$,
故答案为:0<k<$\frac{9}{4}$

点评 本题主要考查方程根的个数的应用,利用函数和方程之间的关系进行转化,结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若函数f(x)在它的定义域(-∞,+∞)内具有单调性,且对任意实数x,都有f(f(x)+ex)=1-e,e是自然对数的底数,则f(ln2)的值等于(  )
A.-2B.-1C.1D.1-e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线y=$\sqrt{1-{x}^{2}}$与直线y=x+b始终有交点,则b的取值范围是[-1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.Sn为数列{an}的前n项和,a1=1,${S_n}=\frac{n}{n-1}{S_{n-1}}+n$(n≥2,n∈N+).
(1)求{an}的通项公式;
(2)设${c_n}={2^{a_n}}•{a_n}$,求{cn}的前n项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2asinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$(a>0,ω>0)的最大值为2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1-x2|的最小值为$\frac{π}{2}$.
(1)求函数f(x)的解析式及其对称轴;   
(2)求f(x)在区间(0,$\frac{π}{8}$]的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax2+bx+c(a>0,b∈R,C∈R),若函数f(x)的最小值是f(-1)=0,f(0)=1且对称轴是x=-1,g(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)求g(2)+g(-2)的值;
(2)求f(x)在区间[t,t+2](t∈R)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且b2-a2=ac,则(  )
A.B=2CB.B=2AC.A=2CD.C=2A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=ax+b-1,若a,b都是从区间[0,2]任取的一个数,则f(1)<0成立的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2015)的值为1.

查看答案和解析>>

同步练习册答案