精英家教网 > 高中数学 > 题目详情
13.若椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上存在一点M,使得∠F1MF2=90°(F1,F2为椭圆的两个焦点),求椭圆的离心率e的取值范围.

分析 利用已知条件列出不等式,推出bc的关系,然后求出离心率的范围.

解答 解:椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上存在一点M,使得∠F1MF2=90°(F1,F2为椭圆的两个焦点),
可得b≤c,
∴a2-c2≤c2
∴a2≤2$\frac{1}{2}$c2
∴e2≥$\frac{1}{2}$,
∴e∈[$\frac{\sqrt{2}}{2}$,1);
故答案为:[$\frac{\sqrt{2}}{2}$,1).

点评 本题考查椭圆离心率的取值范围,考查椭圆的方程,考查学生分析解决问题的能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知tan(π+α)=2,计算
(Ⅰ)$\frac{{2cos(\frac{π}{2}+α)-cos(π-α)}}{{sin(\frac{π}{2}-α)-3sin(π+α)}}$;
(Ⅱ)$\frac{{{{sin}^3}α-cosα}}{{{{sin}^3}α+2cosα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:a>b>0的必要条件是$\frac{1}{a}$<$\frac{1}{b}$;命题q:y=sinx不是周期函数,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∨qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知方程sinθ•x2+cosθ•x-1=0有两个实数根m,n,那么过点M(m,m2)和N(n,n2)(m≠±n)的直线与圆O:x2+y2=1的位置关系是(  )
A.相交B.相切C.相离D.随θ的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.到坐标原点的距离为1的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.A={x|x-$\frac{4}{x-1}$<1},B={x||2x+2|-|x-2|>2},求A,CRA,A∩CRB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC为非直角三角形,其内角A、B、C的对边分别为a、b、c.且有$\sqrt{3}sin\frac{C}{2}co{s}^{2}\frac{B}{2}-cos\frac{C}{2}co{s}^{2}\frac{B}{2}$-$\frac{\sqrt{3}}{2}sin\frac{C}{2}+\frac{1}{2}cos\frac{C}{2}$=0.
(])求角C;
(2)若c=3,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\sqrt{{x}^{2}+1}$+$\sqrt{{x}^{2}-6x+25}$取最小值时,x为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数y=f(x)的定义域为R,当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)•f(y),当x≠y时,f(x)≠f(y)
(1)证明:f(0)=1;
(2)证明:对任意的x∈R都有f(x)>0;
(3)证明:函数f(x)在R上单调递增;
(4)若f(1)=2,当x∈[-1,1]时,f(4x)≤$\frac{f(c)}{4f(-{2}^{x+1})}$恒成立,求实数c的取值范围.

查看答案和解析>>

同步练习册答案