精英家教网 > 高中数学 > 题目详情
(2013•顺义区一模)已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(
12
)=2,则不等式f(2x)>2的解集为
(-1,+∞)
(-1,+∞)
分析:根据偶函数性质可知f(-
1
2
)=2,及f(x)在[0,+∞)上是增函数,利用函数单调性即可求得不等式的解集.
解答:解:因为f(x)为偶函数,且f(
1
2
)=2,所以f(-
1
2
)=2,
又f(x)在(-∞,0]上是减函数,所以f(x)在[0,+∞)上是增函数,
由f(2x)>2得,2x
1
2
或2x<-
1
2
(舍),
2x
1
2
解得x>-1.
所以不等式f(2x)>2的解集为(-1,+∞).
故答案为:(-1,+∞).
点评:本题考查抽象函数的单调性、奇偶性及抽象不等式的解法,解决本题的关键是利用函数性质化抽象不等式为具体不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•顺义区一模)在复平面内,复数
1-2i
2+i
对应的点的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(
π
6
)|对x∈R恒成立,且f(
π
2
)<f(π).则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)函数B1的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2-2x(x∈R)是单函数;
②函数f(x)=
log2x, x≥2
2-x,  x<2
是单函数;
③若y=f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.
其中的真命题是
(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)参数方程
x=2-t
y=-1-2t
(为参数)与极坐标方程ρ=sinθ所表示的图形分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)在△ABC中,若b=4,cosB=-
1
4
,sinA=
15
8
,则a=
2
2
,c=
3
3

查看答案和解析>>

同步练习册答案