【题目】已知圆锥的侧面展开图是一个半圆.
(1)求圆锥的母线与底面所成的角;
(2)过底面中心且平行于母线的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为的抛物线,求圆锥的全面积;
(3)过底面点作垂直且于母线的截面,若截面与圆锥侧面的交线是长轴为的椭圆,求椭圆的面积(椭圆号的面积)
【答案】(1);(2);(3)
【解析】
(1)根据侧面展开图的特征列方程得出底面半径和母线的关系,从而得出母线和底面所成的角;
(2)根据抛物线的一条弦为圆锥底面直径得出底面半径和的关系,从而可得圆锥的面积;
(3)根据三角形相似和圆锥的特点得出椭圆的长轴,短轴和底面半径的关系,从而可得长短轴的关系,得出答案.
(1)设圆锥的底面半径为,母线长为,则圆锥侧面展开图的半径为,弧长为,
圆锥的侧面展开图是一个半圆,
,,
圆锥的轴截面为等边三角形,
圆锥的母线与底面所成的角为;
(2)设抛物线的顶点为,
截面,
则为的中点,
设抛物线方程为,把代入抛物线方程得,
,于是母线,
又由(1)可知,即,,
圆锥的全面积为;
(3)设的中点为,则和为椭圆的长轴顶点,
取的中点,则为椭圆的中心,连接并延长,交于,过作,交圆锥底面圆周于,
则,即,
过作交于,由可知,又,
为靠近的三等分点,连接, ,
中,根据余弦定理
,
,,,
中,过点平行于的线段是,
,,即,
所以椭圆面积
科目:高中数学 来源: 题型:
【题目】设P是椭圆上一点,M,N分别是两圆(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点作圆的两条切线,切点分别为,直线恰好经过椭圆C:的右顶点和上顶点.
(1)求椭圆C方程;
(2)过椭圆C左焦点F的直线l交椭圆C于两点,椭圆上存在一点P,使得四边形为平行四边形,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,的棱长为1的正方体,任作平面与对角线垂直,使得与正方体的每个面都有公共点,这样得到的截面多边形的面积为,周长为的范围分别是_____________(用集合表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. “”是“”成立的充分不必要条件
B. 命题,则
C. 为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40
D. 已知回归直线的斜率的估计值为1.23,样本点的中心为,则回归直线方程为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乳业公司生产甲、乙两种产品,需要A,B,C三种苜蓿草饲料,生产1个单位甲种产品和生产1个单位乙种产品所需三种苜蓿草饲料的吨数如下表所示:
产品 苜蓿草饲料 | A | B | C |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
现有A种饲料200吨,B种饲料360吨,C种饲料300吨,在此基础上生产甲乙两种产品,已知生产1个单位甲产品,产生的利润为2万元;生产1个单位乙产品,产生的利润为3万元,分别用x,y表示生产甲、乙两种产品的数量.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲乙两种产品多少时,能够产出最大的利润?并求出此最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是中国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就。“更相减损术”便出自其中,原文记载如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。”其核心思想编译成如示框图,若输入的,分别为45,63,则输出的为( )
A. 2B. 3C. 5D. 9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com