精英家教网 > 高中数学 > 题目详情
某企业生产甲、乙两种产品,根据市场调查与预测,甲产品的利润与投资成正比,其关系如图1,乙产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资的单位:万元).

(Ⅰ)分别将甲、乙两种产品的利润表示为投资的函数关系式;
(Ⅱ)该企业筹集了100万元资金投入生产甲、乙两种产品,问:怎样分配这100万元资金,才能使企业获得最大利润,其最大利润为多少万元?
分析:(1)根据甲产品的利润与投资成正比,过(1.8,0.45),可得甲的函数关系式;乙产品的利润与投资的算术平方根成正比,过点(4,6),可得乙的函数关系式;
(2)设应给乙投资x万元,则给甲投资(100-x)万元,从而可得函数关系式,求导函数,确定函数的单调性,即可求得最大利润.
解答:解:(1)设投资x万元,利润y万元,则甲产品的利润与投资成正比,过(1.8,0.45),故甲的函数关系式为y=
1
4
x

 乙产品的利润与投资的算术平方根成正比,设方程为y=k
x
,因为过点(4,6),
所以k=3,故乙的函数关系式为 y=3
x

(2)设应给乙投资x万元,则给甲投资(100-x)万元
y=
1
4
(100-x)+3
x
(0≤x≤100)

求导函数,
y′=-
1
4
+
3
2
x
=0
,∴x=36
∴函数在(0,36)上,y′>0,函数单调增,(36,100)上,y′<0,函数单调减,
∴x=36时,函数取得极大值,且为最大值,ymax=34
答:应投资36万元,最大利润34万元.
点评:本题考查函数模型的构建,考查导数知识的运用,单峰函数极值就是最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料4吨、B原料2吨;生产每吨乙产品要用A原料2吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过20吨、B原料不超过18吨,求该企业在一个生产周期内可获得的最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是
27万元
27万元

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产甲.乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润6万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.求甲乙两种产品各生产多少吨时,该企业可获得最大利润,并求出最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨,乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润1万元,每吨乙产品可获得利润3万元,该企业在某个生产周期内甲产品至少生产1吨,乙产品至少生产2吨,消耗A原料不超过1 3吨,消耗B原料不超过1 8吨,那么该企业在这个生产周期内获得最大利润时甲产品的产量应是(  )

查看答案和解析>>

同步练习册答案