精英家教网 > 高中数学 > 题目详情

【题目】为了更好地支持中小型企业的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:

样本数据落在区间的频率为0.45

如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;

样本的中位数为480万元.

其中正确结论的个数为( )

A.0B.1C.2D.3

【答案】D

【解析】

根据直方图求出,求出的频率,可判断;求出的频率,可判断;根据中位数是从左到右频率为的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.

的频率为正确;

的频率为正确;

的频率为的频率为

中位数在且占该组的

故中位数为正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为M是椭圆E上的一个动点,且的面积的最大值为.

1)求椭圆E的标准方程,

2)若,四边形ABCD内接于椭圆E,记直线ADBC的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网购已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在某市的普及情况,某调查机构进行了有关网购的调查,并从参与调查的市民中随机抽取了男、女各100人进行分析,得到如下所示的统计表.

经常网购

偶尔网购或不网购

合计

男性

50

100

女性

70

100

合计

:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为该市市民的网购情况与性别无关.

2)①现从所抽取的100位女性市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;

②将频率视为概率,从该市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为X,求随机变量X的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根据正弦定理把转化为边的关系,进而根据ABC的周长,联立方程组,可求出a的值.

根据正弦定理,可化为

∵△ABC的周长为

联立方程组

解得a=2.

故选:B

【点睛】

(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.

(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.

型】单选题
束】
7

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据说,年过半百的笛卡尔担任瑞典一小公国的公主克里斯蒂娜的数学老师,日久生情,彼此爱慕,其父国王知情后大怒,将笛卡尔流放回法国,并软禁公主,笛卡尔回法国后染上黑死病,连连给公主写信,死前最后一封信只有一个公式:国王不懂,将这封信交给了公主,公主用笛卡尔教她的坐标知识,画出了这个图形心形线”.明白了笛卡尔的心意,登上了国王宝座后,派人去寻笛卡尔,其逝久矣(仅是一个传说).心形线是由一个圆上的一个定点,当该圆绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名.在极坐标系中,方程表示的曲线就是一条心形线,如图,以极轴所在直线为轴,极点为坐标原点的直角坐标系中,已知曲线的参数方程为为参数).

1)求曲线的极坐标方程;

2)若曲线相交于三点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.

1)求抛物线的方程;

2)过点作直线交抛物线于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,直线l的参数方程为为参数),曲线的方程为.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线的极坐标方程;

2)曲线分别交直线和曲线于点,求的最大值及相应的的值.

查看答案和解析>>

同步练习册答案