精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B所对的边长为a,b,则“a=b”是“acosA=bcosB”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
【答案】分析:先看当a=b时,判断出三角形为等腰三角形,可推断出A=B,进而可求得acosA=bcosB,推断出充分性;再看若acosA=bcosB,利用正弦定理把边转化成角的正弦,利用二倍角公式求得A=B或A+B=,推断出条件是不必要的,最后综合可得答案.
解答:解:若a=b
∴A=B,∴acosA=bcosB,条件是充分的;
若acosA=bcosB
∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,即A=B或A+B=,故条件是不必要的.
故选A
点评:本题主要考查了充分条件,必要条件和充分必要条件的判定,正弦定理的应用.充分必要关系是两个命题之间的逻辑关系,是解题中实现命题变更(转化)的依据.两个命题之间有充分不必要,必要不充分、充分且必要、既不充分又不必要四类关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案