精英家教网 > 高中数学 > 题目详情
已知x∈C,方程x2-2x+2=0的两根之比为(  )
A、iB、-iC、±iD、1±i
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:在复数范围内,解方程x2-2x+2=0,进而根据复数的除法运算,可求出两根之比.
解答: 解:∵方程x2-2x+2=0的判别式△=-4,
∴方程x2-2x+2=0有复数解x=1±i,
两根之比为
1+i
1-i
=i
1-i
1+i
=-i

故选C
点评:本题考查复数的基础知识,实系数一元二次方程的解法以及复数的运算.虽然教材中并没有涉及实系数一元二次方程的解法,但是利用复数的引入知识和在复数的概念的基础上应具备创新的能力,这也是新课程标准所要求的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(-1,cosωx+
3
sinωx),
n
=(f(x),cosωx),其中ω>0,且
m
n
,又函数f(x)的图象任意两相邻对称轴间距为
3
2
π.
(Ⅰ)求ω的值;
(Ⅱ)设α是第一象限角,且f(
3
2
α+
π
2
)=
23
26
,求
sin(α+
π
4
)
cos(4π+2α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

R表示实数集,集合M={x∈R|0<log3x<1},N={x∈R|(x-1)(x-2)<0},则(  )
A、M∩N=M
B、M∪N=N
C、(∁RN)∩M=∅
D、(∁RM)∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|y=
x2-1
x+1
},B={(x,y)|y=ax},且A∩B=∅,则a的值为(  )
A、a=1或a=0
B、a=2或a=0
C、a=1或a=2
D、a=1或a=3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F1(-2
5
,0),P为C上一点,满足|OP|=|OF1|且|PF1|=4,则椭圆C的方程为(  )
A、
x2
25
+
y2
5
=1
B、
x2
30
+
y2
10
=1
C、
x2
36
+
y2
16
=1
D、
x2
45
+
y2
25
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|=1,|k
a
+
b
|=
3
|
a
-k
b
|(k>0,k∈R).
(1)求
a
b
关于k的解析式f(k);
(2)若
a
b
,求实数k的值;
(3)求向量
a
b
夹角的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+
1
2
x(x<0)
ex-1(x≥0)
,若函数y=f(x)-kx有3个零点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数:①f(x)=x2-2x;②f(x)=sinx,0≤x≤2π;③f(x)=2x+x;④f(x)=log2(2x-1),x>
1
2
.其中,能使f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]恒成立的函数的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为
 

查看答案和解析>>

同步练习册答案