精英家教网 > 高中数学 > 题目详情

如图,矩形ABCD中,|AB|=10,|BC|=6,现以矩形ABCD的AB边为x轴,AB的中点为原点建立直角坐标系,P是x轴上方一点,使得PC、PD与线段AB分别交于点C1、D1,且|AD1|,|D1C1|,|C1B|成等比数列.
(1)求动点P的轨迹方程;
(2)求动点P到直线l:x+y+6=0距离
的最大值及取得最大值时点P的坐标.

解:(1)设点P的坐标为(x,y)(y>0),过P作PE∥CD交DA的延长线于E,交CB的延长线于F.

在△DPE中,,得

在△PCD中,=

同理可得
∵|AD1|,|D1C1|,|C1B|成等比数列,
∴|D1C1|2=|AD1|•|C1B|.
∴(2=
化简得
∴动点P的轨迹方程为
(2)由图易知当与直线l平行的直线与半椭圆相切于点P时,点P到直线l距离的最大.
设与直线l:x+y+6=0平行的直线方程为x+y+k=0,代入
得 34x2+50kx+25k2-225=0,①
由△=2500k2-3400(k2-9)=0,
解得k2=34,由k<0,得
故点P到直线l距离的最大值为
代入①式,可解得点P的坐标为
分析:(1)设点P的坐标为(x,y)(y>0),用坐标分别表示出|AD1|,|D1C1|,|C1B|,利用|AD1|,|D1C1|,|C1B|成等比数列,得方程,进而化简即可得动点P的轨迹方程;
(2)由图易知当与直线l平行的直线与半椭圆相切于点P时,点P到直线l距离的最大.设与直线l:x+y+6=0平行的直线方程为x+y+k=0,代入,化简得 34x2+50kx+25k2-225=0,利用△=0,可求k的值.从而可求点P到直线l距离的最大值及点P的坐标.
点评:本题以等比数列为载体,考查轨迹方程的求解,考查直线与椭圆的位置关系,解题的关键是将问题转化为当与直线l平行的直线与半椭圆相切于点P时,点P到直线l距离的最大求解
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=
8
3
3
,BC=2,椭圆M的中心和准线分别是已知矩形的中心和一组对边所在直线,矩形的另一组对边间的距离为椭圆的短轴长,椭圆M的离心率大于0.7.
(I)建立适当的平面直角坐标系,求椭圆M的方程;
(II)过椭圆M的中心作直线l与椭圆交于P,Q两点,设椭圆的右焦点为F2,当∠PF2Q=
3
时,求△PF2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=1,AD=2,M为AD的中点,则
BM
BD
的值为
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

A 若方程ax-x-a=0有两个实数解,则a的取值范围是
(1,+∞)
(1,+∞)

B 如图,矩形ABCD中边长AB=2,BC=1,E为BC的中点,若F为正方形内(含边界)任意一点,则
AE
AF
的最大值为
9
2
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,将△ADE沿AE翻折到D'点,当D'在平面ABC上的射影落在AE上时,四棱锥D'-ABCE的体积是
2
6
-
2
12
2
6
-
2
12
;当D'在平面ABC上的射影落在AC上时,二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使
PQ
QD
,说明理由.
(2)问当Q点惟一,且cos<
BP
QD
>=
10
10
时,求点P的位置.

查看答案和解析>>

同步练习册答案