精英家教网 > 高中数学 > 题目详情

已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M

(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程

(1)
(2)见解析;

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xoy中,已知椭圆C1的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,对称轴为坐标轴,焦点在轴上,有一个顶点为
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作直线(不与轴重合)交椭圆于两点,连结分别交直线两点,试探究直线的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点分别为交于两点(为坐标原点),且.
(1)求抛物线的方程;
(2)过点的直线交的下半部分于点,交的左半部分于点,点坐标为,求△面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点,长轴的左、右端点分别为,且.
(1)求椭圆的方程;
(2)过焦点斜率为)的直线交椭圆两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:,点A、B在抛物线C上.

(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦距为,过右焦点和短轴一个端点的直线的斜率为为坐标原点.
(1)求椭圆的方程.
(2)设斜率为的直线相交于两点,记面积的最大值为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆G:.过点(m,0)作圆的切线l交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求的最大值.

查看答案和解析>>

同步练习册答案