精英家教网 > 高中数学 > 题目详情

【题目】已知直线两两成异面直线.问是否存在直线同时与相交?证明你的结论.

【答案】存在

【解析】

结论是肯定的.我们分两种情况证明存在这样的直线同时与相交.

在直线上任取一点,过,作

(1)若三线共面.

作平面,过作平面,由有公共点,知必相交于过的一条直线.在内,相交于,必与的平行线相交,记交点为;在内,相交于,必与的平行线相交,记交点为.得直线相交于,与相交于,与相交于

(2)若三线不共面.

作一个平行六面体,使上,上,上.在线段内取一点,过不共线的三点作一个平面与相交于,与相交于.在平面内,因,直线与平行线中的一条相交必与另一条相交,记交点为.得直线交于,与交于,与交于

的任意性还可知,这样的直线有无穷条.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽子3个,肉粽子2个,白粽子5个,这三种粽子的外观完全相同,从中任意选取3个.

1)求三种粽子各取到1个的概率;

2)设ξ表示取到的豆沙粽子个数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与定直线相切.

1)求动圆圆心的轨迹的方程;

2)过点的任一条直线与轨迹交于不同的两点,试探究在轴上是否存在定点(异于点),使得?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,将函数的图象向右平移个单位长度,再向下平移个单位长度后,得到函数的图象.

1)求函数的表达式;

2)当时,求在区间上的最大值和最小值;

3)若函数上的最小值为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.

1)请将列联表填写完整:

有接触史

无接触史

总计

有武汉旅行史

27

无武汉旅行史

18

总计

27

54

2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且时,.

)求的值;

)求函数的值域

)设函数的定义域为集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村充分利用自身资源,大力发展养殖业以增加收入.计划共投入80万元,全部用于甲、乙两个项目,要求每个项目至少要投入20万元在对市场进行调研时发现甲项目的收益与投入x(单位:万元)满足,乙项目的收益与投入x(单位:万元)满足.

1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;

2)问甲、乙两个项目各投入多少万元时,总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的最小值为1,

(1)求的解析式;

(2)若在区间上不单调,求实数m的取值范围;

(3)求函数在区间上的最小值

查看答案和解析>>

同步练习册答案