精英家教网 > 高中数学 > 题目详情

【题目】如果函数的定义域为,对于定义域内的任意存在实数使得成立,则称此函数具有“性质”.

1)判断函数是否具有“性质”,若具有“性质”,写出所有的值;若不具有“性质”,请说明理由.

2)设函数具有“性质”,且当时,,求当时函数的解析式;若交点个数为1001个,求的值.

【答案】1,理由见解析(2.

【解析】

1)根据题意先检验是否成立即可检验是否具有“a)性质(2)由题意可得,据此递推关系可推断函数的周期,根据交点周期性出现的规律即可求解满足条件的,以及的解析式.

1)由

根据诱导公式得

具有“a)性质”,其中

2具有“性质”,

从而得到是以2为周期的函数.

,则

再设

,则,则

,则,则

.

对于,都有,而

是周期为1的函数.

时,要使1001个交点,只要1000个交点,而在有一个交点.

,从而得

时,同理可得

时,不合题意.

综上所述

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的为( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线系Mxcosθ+y﹣2sinθ=10≤θ≤2π),对于下列四个命题:

AM中所有直线均经过一个定点

B.存在定点P不在M中的任一条直线上

C.对于任意整数nn≥3),存在正n边形,其所有边均在M中的直线上

DM中的直线所能围成的正三角形面积都相等

其中真命题的代号是 (写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员毎次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算机产生09之间取整数值的随机数,指定134表示命中,567890表示不命中;再以三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

据此估计,该运动员三次投篮恰有两次命中的概率为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面为正三角形,侧棱垂直于底面,.若是棱上的点,且,则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,若p为常数),则称等方差数列”.下列是对等方差数列的判断,正确的是(

A.不是等方差数列;

B.既是等方差数列,又是等差数列,则该数列为常数列;

C.已知数列是等方差数列,则数列是等方差数列;

D.是等方差数列,则(k为常数)也是等方差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长沙某公司对其主推产品在过去5个月的月广告投入xi(百万元)和相应的销售额yi(百万元)进行了统计,其中i=1,2,3,4,5,对所得数据进行整理,绘制散点图并计算出一些统计量如下:

,其中i=1,2,3,4,5.

(Ⅰ)根据散点图判断,哪一个适宜作为月销售额关于月广告投入xi的回归方程类型?(给出判断即可,不必说明理由)

(Ⅱ)根据(Ⅰ)的判断结果及题中所给数据,建立y关于x的回归方程,并据此估计月广告投入220万元时的月销售额.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某山区小学有100名四年级学生,将全体四年级学生随机按00-99编号,并且按编号顺序平均分成10组,现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.

1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;

2)分别统计这10名学生的数学成绩,获得成绩的茎叶图如图所示,这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为(x-12+y-12=9P22)是该圆内一点,过点P的最长弦和最短弦分别为ACBD,则四边形ABCD的面积是______

查看答案和解析>>

同步练习册答案