【题目】已知O为坐标原点,,,直线AG,BG相交于点G,且它们的斜率之积为.记点G的轨迹为曲线C.
(1)若射线与曲线C交于点D,且E为曲线C的最高点,证明:.
(2)直线与曲线C交于M,N两点,直线AM,AN与y轴分别交于P,Q两点.试问在x轴上是否存在定点T,使得以PQ为直径的圆恒过点T?若存在,求出T的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数),,为曲线上的一动点.
(I)求动点对应的参数从变动到时,线段所扫过的图形面积;
(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点的动直线l与y轴交于点,过点T且垂直于l的直线与直线相交于点M.
(1)求M的轨迹方程;
(2)设M位于第一象限,以AM为直径的圆与y轴相交于点N,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.
1求分数在的频数及全班人数;
2求分数在之间的频数,并计算频率分布直方图中间矩形的高;
3若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥的底面边长和高都为2.现从该棱锥的5个顶点中随机选取3个点构成三角形,设随机变量表示所得三角形的面积.
(1)求概率的值;
(2)求随机变量的概率分布及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中且k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.
(1)若,试求p关于k的函数关系式p=f(k).
(2)若p与干扰素计量相关,其中2)是不同的正实数,满足x1=1且.
(i)求证:数列为等比数列;
(ii)当时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com