精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,过椭圆E的左焦点且与x轴垂直的直线与椭圆E相交于的PQ两点,O为坐标原点,的面积为.

1)求椭圆E的方程;

2)点MN为椭圆E上不同两点,若,求证:的面积为定值.

【答案】(1) (2)证明见解析

【解析】

1)离心率提供一个等式是椭圆的通径,通径长为,这样的面积又提供一个等式,两者联立方程组结合,可求得得椭圆标准方程.

2)设,由,当直线的斜率存在时,设直线的方程为,代入椭圆方程并整理,得.应用韦达定理得,代入 可得的关系,注意,然后由圆锥曲线中的弦长公式计算弦长,求出到直线的距离,求得的面积,化简可得为定值,同样直线的不斜率存在时,也求得的面积和刚才一样,即得结论.

1)设椭圆的半焦距为c,则

过椭圆左焦点且与x轴垂直的直线方程为,与椭圆方程联立解得

所以,所以

把①代入②,解得

,解得

所以E的方程为:

2)设,因为

所以,即

i)当直线的斜率存在时,设直线的方程为,代入椭圆方程并整理,得.

所以,整理得,代入③,

O到直线的距离

所以

,即的面积为定值1

ii)当直线的斜率不存在时,不妨设的斜率为且点M在第一象限,此时的方程为,代入椭圆方程,解得,此时的面积为.

综上可知,的面积为定值1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的值域是,有下列结论:①当时, ②当时,;③当时, ④当时,.其中结论正确的所有的序号是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为的等边三角形中,点分别是边上的点,满足,将沿直线折到的位置. 在翻折过程中,下列结论成立的是(

A.在边上存在点,使得在翻折过程中,满足平面

B.存在,使得在翻折过程中的某个位置,满足平面平面

C.,当二面角为直二面角时,

D.在翻折过程中,四棱锥体积的最大值记为的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系上,有一点列,设点的坐标),其中 ,且满足).

1)已知点,点满足,求的坐标;

2)已知点),且)是递增数列,点在直线上,求

3)若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是数学家伯努瓦曼德尔布罗在20世纪70年代创立的一门新的数学学科.它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图1所示的分形规律可得如图2所示的一个树形图:

易知第三行有白圈5个,黑圈4个.我们采用坐标来表示各行中的白圈、黑圈的个数.比如第一行记为,第二行记为,第三行记为.照此规律,第行中的白圈、黑圈的坐标,则________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点A为该椭圆的左顶点,过右焦点的直线l与椭圆交于BC两点,当轴时,三角形ABC的面积为18

求椭圆的方程;

如图,当动直线BC斜率存在且不为0时,直线分别交直线ABAC于点MN,问x轴上是否存在点P,使得,若存在求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图中六个区域进行染色,每个区域只染一种颜色,每个区域只染一种颜色,且相邻的区域不同色.若有种颜色可供选择,则共有_________种不同的染色方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点,

(1)当长为1分米时,求折卷成的包装盒的容积;

(2)当的长是多少分米时,折卷成的包装盒的容积最大?

查看答案和解析>>

同步练习册答案