精英家教网 > 高中数学 > 题目详情

【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2 sin( ),直线C的极坐标方程为ρsinθ=1,射线θ=φ,θ= +φ(φ∈[0,π])与曲线C1分别交异于极点O的两点A,B.
(I)把曲线C1和C2化成直角坐标方程,并求直线C2被曲线C1截得的弦长;
(II)求|OA|2+|OB|2的最小值.

【答案】解:(I)曲线C1的极坐标方程为ρ=2 sin( ),∴ρ=2sinθ+2cosθ,
∴ρ2=2ρcosθ+2ρsinθ,
∴x2+y2=2x+2y,
即(x﹣1)2+(y﹣1)2=2为圆C的直角坐标方程;
直线C2的极坐标方程为ρsinθ=1,直角坐标方程为y=1
y=1,x=1± ,∴直线C2被曲线C1截得的弦长=2
(II)|OA|=2 sin(φ+ ),|OB|=2 sin( +φ+ )=2 cosφ
|OA|2+|OB|2=8sin2(φ+ )+8cos2φ=4 sin(2φ+ )+8,
∵φ∈[0,π],
∴2φ+ ∈[ ],
∴|OA|2+|OB|2的最小值为8﹣4
【解析】(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 进行代换即得直角坐标方程,并求直线C2被曲线C1截得的弦长;(II)|OA|2+|OB|2=8sin2(φ+ )+8cos2φ=4 sin(2φ+ )+8,即可求|OA|2+|OB|2的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.,当点在圆上运动时,

(1)求点的轨迹的方程;

(2) 若,直线交曲线两点(点与点不重合),且满足.为坐标原点,点满足,证明直线过定点,并求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象上一点处的切线方程为

)求的值.

)若方程在区间内有两个不等实根,求实数的取值范围.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某冷饮店的经营状况,随机记录了该店月的月营业额(单位:万元)与月份的数据,如下表:

(1)求关于的回归直线方程

(2)若在这样本点中任取两点,求恰有一点在回归直线上的概率.

附:回归直线方程中,

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.

(1)已画出函数轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;

⑵写出函数的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项为正数的等比数列{an}满足:a7=a6+2a5 , 若存在两项am、an使得 ,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L1L2两条巷道通往作业区(如下图),L1巷道有A1A2A3三个易堵塞点,各点被堵塞的概率都是L2巷道有B1B2两个易堵塞点,被堵塞的概率分别为.

(1)求L1巷道中,三个易堵塞点最多有一个被堵塞的概率;

(2)若L2巷道中堵塞点个数为X,求X的分布列及均值E(X),并按照“平均堵塞点少的巷道是较好的抢险路线”的标准,请你帮助救援队选择一条抢险路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的各项均为正数,a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)当k=1,p=5时,若数列{an}成等比数列,求t的值;
(2)设数列{an}是一个等比数列,求{an}的公比及t(用p、k的代数式表示);
(3)当k=1,t=1时,设Tn=a1+ + +…+ + ,参照教材上推导等比数列前n项和公式的推导方法,求证:{ Tn ﹣6n}是一个常数.

查看答案和解析>>

同步练习册答案