分析 (1)根据$\overrightarrow{a}$⊥$\overrightarrow{b}$,结合正弦定理和余弦定理求出B的值即可,(2)根据正弦定理以及三角形的面积公式求出即可.
解答 解:(1)∵$\overrightarrow{a}$=(sinB-sinC,sinC-sinA),$\overrightarrow{b}$=(sinB+sinC,sinA),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴(sinB-sinC)•(sinB+sinC)+(sinC-sinA)•sinA=0,
∴b2=a2+c2-ac,
∴2cosB=1,
∴B=$\frac{π}{3}$;
(2)∵$\overrightarrow{a}$⊥$\overrightarrow{b}$,∴△ABC是RT△,而B=$\frac{π}{3}$,故A=$\frac{π}{6}$,
由$\frac{a}{sinA}$=$\frac{b}{sinB}$=2R,得:$\frac{a}{sin\frac{π}{6}}$=$\frac{b}{sin\frac{π}{3}}$=2,
解得:a=1,b=$\sqrt{3}$,
故S△ABC=$\frac{1}{2}$•$\sqrt{3}$•1=$\frac{\sqrt{3}}{2}$.
点评 本题考察了向量数量积的运算,考察三角恒等变换,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com