精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=BC=4,∠ACB=90°,AB=AA1,点D是AB的中点,点E是BB1的中点.
(1)求证:A1B⊥平面CDE;
(2)求二面角D-CE-A1的大小.
分析:(1)要证A1B⊥平面CDE,只需证明A1B⊥平面CDE中的两条相交直线,易证A1B⊥AB1,A1B⊥DE,从而问题得证;
(2)先确定二面角D-CE-A1的平面角.根据A1B⊥平面CDE,设A1B与DE交于点M,过M作MN⊥CE,垂足为N,连接A1N,则A1N⊥CE,则可知∠A1NM即为二面角D-CE-A1的平面角.从而可求
解答:解:(1)证明:在直三棱柱ABC-A1B1C1中,
面A1B⊥面ABC,又D为AB中点,∴CD⊥面A1B,
∴CD⊥A1B,∵AB=AA1,∴A1B⊥AB1
又DE∥AB1∴A1B⊥DE,又DE∩CD=D
∴A1B⊥平面CDE
(2)由(Ⅰ)知A1B⊥平面CDE,设A1B与DE交于点M,过M作MN⊥CE,垂足为N,连接A1N,则A1N⊥CE,
故∠A1NM即为二面角D-CE-A1的平面角.
CE=
BC2+BE2
=
6
EM=
1
4
AB1=1

又由△ENM△EDC得MN=
CD•ME
CE
=
3
3
.  
又∵A1M=
3
4
A1B=3
,∴BN=
BC•BE
CE
=
2
3
3
BM=
1
4
A1B=
1
4
A
A
2
1
+AB2
=
1
4
(2
2
)
2
+(2
2
)
2
=1

在Rt△A1MN中,tan∠A1NM=
A1M
MN
=3
3

故二面角D-CE-A1的大小为arctan3
3
点评:本题以直三棱柱为载体,考查线面垂直,考查面面角,关键是正确利用线面垂直的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案