精英家教网 > 高中数学 > 题目详情

已知A、B、C是三角形ABC的三内角,且数学公式=(sinB-sinA,sinB-sinC),数学公式=(sinB+sinA,-sinC),并且数学公式数学公式=0.
(1)求角A的大小.
(2)数学公式,求f(B)的递增区间.

解:(1)由=0
得(sinB-sinA)(sinB+sinA)-sinC(sinB-sinC)=0
即sin2B-sin2A-sinBsinC+sin2C=0(2分)
由正弦定理得b2-a2+bc+c2=0
即b2+c2-a2=bc(4分)
由余弦定理得
又0<A<π,所以(6分)
(2)=cosB+sinB+2=,(8分)
因为,且B,C均为△ABC的内角,
所以
所以

时,f(B)为递增函数,
即f(B)的递增区间为(12分)
分析:(1)利用=0,推出sin2B-sin2A-sinBsinC+sin2C=0,由正弦定理得b2-a2+bc+c2=0,然后利用余弦定理求出角A的大小.
(2)化简,根据B+C的范围得到,求出函数f(B)的递增区间.
点评:本题考查正弦函数的单调性,同角三角函数间的基本关系,考查计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C是三角形的三个顶点,
AB
2
=
AB
AC
+
AB
CB
+
BC
CA
,则△ABC为(  )

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(湖北卷)解析版(理) 题型:选择题

 记实数中的最大数为,最小数为已知的三边边长为a,b,c(),定义它的倾斜度为

   

    则是“为等边三角”的

    A.必要而不充分的条件   B.充分而不必要的条件

    C.充要条件     D.既不充分也不必要的条件

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B、C是三角形的三个顶点,
AB
2
=
AB
AC
+
AB
CB
+
BC
CA
,则△ABC为(  )
A.等腰三角形
B.直角三角开
C.等腰直角三角形
D.既非等腰三角形又非直角三角形

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海外国语大学附中高三(上)第一次周练数学试卷(解析版) 题型:选择题

已知A、B、C是三角形的三个顶点,,则△ABC为( )
A.等腰三角形
B.直角三角开
C.等腰直角三角形
D.既非等腰三角形又非直角三角形

查看答案和解析>>

科目:高中数学 来源:2005-2006学年湖北省武汉市华中师大一附中高三(上)期中数学试卷(理科)(解析版) 题型:选择题

已知A、B、C是三角形的三个顶点,,则△ABC为( )
A.等腰三角形
B.直角三角开
C.等腰直角三角形
D.既非等腰三角形又非直角三角形

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�