【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为椭圆的参数方程为在以坐标原点为极点, 轴正半轴为极轴建立的极坐标系中,点的坐标为.
(1)将点的坐标化为直角坐标系下的坐标,椭圆的参数方程化为普通方程;
(2)直线与椭圆交于, 两点,求的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左顶点为,右焦点为, 为原点, , 是轴上的两个动点,且,直线和分别与椭圆交于, 两点.
(Ⅰ)求的面积的最小值;
(Ⅱ)证明: , , 三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A、B、C能答对题目的概率分别为P(A)=,P(B)=,P(C)=,诸葛亮D能答对题目的概率为P(D)=,如果将三个臭皮匠A、B、C组成一组与诸葛亮D比赛,答对题目多者为胜方,问哪方胜?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形, 底面, ,过点的平面与棱, , 分别交于点, , (, , 三点均不在棱的端点处).
(Ⅰ)求证:平面平面;
(Ⅱ)若平面,求的值;
(Ⅲ)直线是否可能与平面平行?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动1次的有2人,2次的有4人,3次的有4人.现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设为事件“选出的2人参加义工活动次数之和为4”,求事件发生的概率;
(2)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且,
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂需要确定加工某大型零件所花费的时间,连续4天做了4次统计,得到的数据如下:
零件的个数(个) | 2 | 3 | 4 | 5 |
加工的时间(小时) | 2.5 | 3 | 4 | 5.5 |
(1)在直角坐标系中画出以上数据的散点图,求出关于的回归方程,并在坐标系中画出回归直线;
(2)试预测加工10个零件需要多少时间?
参考公式:两个具有线性关系的变量的一组数据:,
其回归方程为,其中
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com