精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P-ABCD中,平面ABCDEPD的中点,点FPC上,且

1)求证:平面平面PAD

2)求二面角F-AE-P的余弦值.

【答案】1)见解析;(2

【解析】

1)先证明,然后可证明平面PAD,从而得证面面垂直;

(2)过点AAD的垂线交BC于点M轴建立空间直角坐标系,用空间向量法求得二面角.

1)证明:因为平面ABCD平面ABCD,所以

又因为平面PAD,所以平面PAD

平面PCD,所以平面平面PAD

2)过点AAD的垂线交BC于点M因为平面ABCD平面ABCD

所以.建立如图所示的空间直角坐标系

.因为EPD的中点,所以

所以,所以

所以.设平面AEF的法向量为,则

,令,则.于是

又因为平面PAD的一个法向量为,所以

由题知,二面角为锐角,所以其余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三角形面积为为三角形三边长,为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( )

A.

B.

C. 为四面体的高)

D. (其中分别为四面体四个面的面积,为四面体内切球的半径,设四面体的内切球的球心为,则球心到四个面的距离都是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左顶点为,过椭圆的右焦点作互相垂直的两条直线,分别交直线两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)求的面积的最小值;

(Ⅲ)设直线与椭圆的另一个交点为,椭圆的右顶点为,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,其右焦点为,以坐标原点为圆心,椭圆短半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)经过点的直线分别交椭圆四点,且,探究:是否存在常数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是正整数.在一个十进制位数的各位数字中,若含有数字8,则在每个数字8的前一位数字就不能是数字3(即不能出现38字样).试求出所有这样的位数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】吸烟有害健康,吸烟会对身体造成伤害,哈尔滨市于2012531日规定室内场所禁止吸烟.美国癌症协会研究表明,开始吸烟年龄X分别为16岁、18岁、20岁和22岁者,其得肺癌的相对危险度Y依次为15.1012.819.723.21;每天吸烟支数U分别为102030者,其得肺癌的相对危险度V分别为7.59.516.6,用表示变量XY之间的线性相关系数,用r2表示变量UV之间的线性相关系数,则下列说法正确的是(  )

A.r1r2B.r1r20

C.0r1r2D.r10r2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80,估计的概率;

(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀.请在答题卡上将列联表补充完整,并判断是否有的把握认为比赛成绩是否优秀与性别有关

参考公式及数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xln xaex(e为自然对数的底数)有两个极值点,则实数a的取值范围是(  )

A. B.(0,e)

C. D.(-∞,e)

查看答案和解析>>

同步练习册答案