精英家教网 > 高中数学 > 题目详情
已知定义在[-3,3]上的函数 y=tx-
1
2
x3
,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.
(1)f'(x)=t-
3
2
x2,令f′(x)=0得x=±
2t
3

∵2≤t≤6∴
2t
3
∈[
4
3
,2]

x (-3,-
2t
3
)
-
2t
3
(-
2t
3
2t
3
)
2t
3
(
2t
3
,3)
f'(x) - 0 + 0 -
f(x) 极小值 极大值
2t
3
?
=2
时,即t=6时,f(x)在[-
2t
3
?
,0]
上是增函数,
2t
3
?
<2
即2<t<6时,f(x)在(-2,-
2t
3
?
)
减,在(-
2t
3
?
,0)
上增
∴f(x)在[-2,0]上最小值为f(x)min=f(-
2t
3
?
)=-(
2t
3
?
)
3
2
,此时x=-
2t
3
=-
6t
3

(2)由(1)可知f(x)在(-
2t
3
?
2t
3
?
)
上增,
2t
3
?
≥3
t≥
27
2
时,f(x)在[-3,3]上最大值为f(3)=3t-
27
2
81
2
-
27
2
=27>8
2t
3
?
<3
6≤t<
27
2
时,f(x)在[0,3]上最大值为,f(
2t
3
)=t
2t
3
-
1
2
(
2t
3
)3=(
2t
3
)
3
2
≥(
2×6
3
)
3
2
=8
又f(0)=0,
∴y=f(x)的图象上至少有一点在直线y=8上
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在[-3,3]上的函数y=f(x)满足条件:对于任意的x,y∈R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)<0.
(1)求证:函数f(x)是奇函数;
(2)求证:函数f(x)在[-3,3]上是减函数;
(3)解不等式f(2x-1)+f(3x+2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[-3,3]上的函数 y=tx-
12
x3
,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在[-3,3]上的函数 数学公式,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年福建省泉州市南安一中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知定义在[-3,3]上的函数 ,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.

查看答案和解析>>

同步练习册答案