(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.
⑴,此时在上为减函数,在上为增函数,在上为减函数;
当时,,此时在上为减函数;
当时,此时在上为减函数,在上为增函数,在上为减函数.
⑵ a的取值范围为.
解析试题分析:⑴,令,
即所以
所以 …………………………………………………………………3分
,此时在上为减函数,在上为增函数,在上为减函数;
当时,,此时在上为减函数;
当时,此时在上为减函数,在上为增函数,在上为减函数. ………………………………………………………………………………6分
⑵ 当时,,则在上为增函数,在上为减函数
又
∴在上的值域为 ………………………………………8分
又在上为增函数,其值域为……10分
等价于……………………………………………12分
存在使得成立,只须
,又
∴a的取值范围为. ………………………………………………………………14分
考点:本题主要考查应用导数研究函数的单调性,恒成立问题。
点评:典型题,本题属于导数应用中的基本问题,(2)涉及恒成立问题,转化成求函数的最值,这种思路是一般解法,往往要利用“分离参数法”,本题最终化为最值之间故选的研究,体现考题“起点高,落点低”的特点。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数。
(Ⅰ)若函数在定义域内为增函数,求实数的取值范围;
(Ⅱ)设,若函数存在两个零点,且满足,问:函数在处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)若函数y=f(x)的图象切x轴于点(2,0),求a、b的值;
(2)设函数y="f(x)" 的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com