精英家教网 > 高中数学 > 题目详情

【题目】无穷数列满足: 为正整数,且对任意正整数 为前 中等于的项的个数.

)若,请写出数列的前7项;

)求证:对于任意正整数必存在,使得

)求证:“”是“存在,当时,恒有 成立”的充要条件。

【答案】(Ⅰ)2112231(Ⅱ)证明见解析;(Ⅲ)证明见解析.

【解析】试题分析:(Ⅰ)根据题设条件,直接写出即可;

(Ⅱ)假设存在正整数,使得对任意的 ,利用反证法证明即可;

可分充分性和必要性证明即可,当得数列满足 ,当为偶数,则;当为奇数,则即可证得充分性;再作出必要性的证明即可.

试题解析:

(Ⅰ)2,1,1,2,2,3,1

假设存在正整数,使得对任意的 . 由题意,

考虑数列的前项:

其中至少有项的取值相同,不妨设

此时有: ,矛盾.

故对于任意的正整数必存在,使得.

(Ⅲ)充分性:

时,数列

特别地 故对任意的

1)若为偶数,则

2)若为奇数,则

综上 恒成立,特别地,取有当时,恒有成立

方法一:假设存在),使得存在,当时,恒有成立

则数列的前项为

后面的项顺次为

……

对任意的总存在使得 这与矛盾,故若存在,当时,恒有成立,必有

方法二:若存在,当时, 恒成立,记.

由第2问的结论可知:存在,使得(由s的定义知

不妨设是数列第一个大于等于的项,即均小于等于s.

.因为,所以,即为正整数,所以.

,由数列的定义可知,在中恰有t项等于1.

假设则可设,其中

考虑这t1的前一项,即

因为它们均为不超过s的正整数,且,所以中一定存在两项相等,

将其记为a,则数列中相邻两项恰好为(a1)的情况至少出现2次,但根据数列的定义可知:第二个a的后一项应该至少为2,不能为1,所以矛盾!

故假设不成立,所以,即必要性得证!

综上存在,当时,恒有成立的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)若当时,函数的图象恒在直线上方,求实数的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数, ,都有,且当时, ,若函数)在区间内恰有三个不同零点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小速度越快,单位是MIPS

测试1

测试2

测试3

测试4

测试5

测试6

测试7

测试8

测试9

测试10

测试11

测试12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;

(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X)

(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为自然对数的底数).

1)讨论函数的单调性,并写出相应的单调区间;

2)设,若函数对任意都成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线与曲线满足下列两个条件:

(i)直线在点处与曲线相切;(ii)曲线在点附近位于直线的两侧.则称直线在点处“切过”曲线.

下列命题正确的是__________(写出所有正确命题的编号).

①直线在点处“切过”曲线

②直线在点处“切过”曲线

③直线在点处“切过”曲线

④直线在点处“切过”曲线

⑤直线在点处“切过”曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形, 平面

(1)求证: 平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表:

表1:某年部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

1月1日

7:36

4月9日

5:46

7月9日

4:53

10月8日

6:17

1月21日

7:11

4月28日

5:19

7月27日

5:07

10月26日

6:36

2月10日

7:14

5月16日

4:59

8月14日

5:24

11月13日

6:56

3月2日

6:47

6月3日

4:47

9月2日

5:42

12月1日

7:16

3月22日

6:15

6月22日

4:46

9月20日

5:50

12月20日

7:31

表2:某年1月部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

2月1日

7:23

2月11日

7:13

2月21日

6:59

2月3日

7:22

2月13日

7:11

2月23日

6:57

2月5日

7:20

2月15日

7:08

2月25日

6:55

2月7日

7:17

2月17日

7:05

2月27日

6:52

2月9日

7:15

2月19日

7:02

2月28日

6:49

(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;

(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记为这两人中观看升旗的时刻早于7:00的人数,求的 分布列和数学期望;

(3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为),记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018百校联盟TOP20一月联考函数处的切线斜率为

I)讨论函数的单调性;

II)设 ,对任意的,存在,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案