精英家教网 > 高中数学 > 题目详情

【题目】四棱锥中,底面为矩形, .侧面底面.

(1)证明:

(2)设与平面所成的角为,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】【试题分析】(1中点为,连接,由已知,所以,根据面面垂直的性质定理,有平面,以为原点, 轴, 轴,建立空间直角坐标系,计算可得证.(2)设,利用直线和平面所成角为,计算,再利用平面和平面的法向量计算二面角的余弦值.

【试题解析】

解:(1)证法一:设中点为,连接

由已知,所以

而平面平面,交线为

平面

为原点, 轴, 轴,如图建立空间直角坐标系,并设

所以

,所以.

证法二:设中点为,连接,由已知,所以

而平面平面,交线为

平面,从而

在矩形中,连接,设交于

则由,所以

所以,故

由①②知平面

所以.

(2)由,平面平面,交线为,可得平面

所以平面平面,交线为

,垂足为,则平面

与平面所成的角即为角

所以

从而三角形为等边三角形,

(也可以用向量法求出,设,则,可求得平面的一个法向量为,而,由可解得

设平面的一个法向量为,则

, 可取

设平面的一个法向量为,则

,可取

于是

故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

,求函数的极值;

(Ⅱ)若,,,使得),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,棱底面,且, , , 的中点.

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地户家庭的年收入(万元)和年饮食支出 (万元)的统计资料如下表:

(1)求关于的线性回归方程;(结果保留到小数点后为数字)

(2)利用(1)中的回归方程,分析这户家庭的年饮食支出的变化情况,并预测该地年收入 万元的家庭的年饮食支出.(结果保留到小数点后位数字)

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面

(1)求直线与平面所成角的正弦值;

(2)若动点在底面边界及内部,二面角的余弦值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

,点在线段上,且 平面.

1)求证:平面平面

2)当四棱锥的体积最大时,求四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.

(Ⅰ)求点的轨迹方程;

(Ⅱ)设点的轨迹为曲线,抛物线 的焦点为. 是过点互相垂直的两条直线,直线与曲线交于 两点,直线与曲线交于 两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 平面,底面中, ,且 的中点.

(1)求证:平面平面

(2)问在棱上是否存在点,使平面,若存在,请求出二面角的余弦值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是当前主要的社交应用之一,有着几亿用户,覆盖范围广,及时快捷,作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段。某公司为了解人们对“微信支付”认可度,对年龄段的人群随机抽取人进行了一次“你是否喜欢微信支付”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

组号

分组

喜欢微信支付的人数

喜欢微信支付的人数

占本组的频率

第一组

第二组

第三组

第四组

第五组

第六组

(1)补全频率分布直方图,并求 的值;

(2)在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取人参加“微信支付日鼓励金活动,求第四、五、六组应分别抽取的人数;

(3)在(2)中抽取的人中随机选派人做采访嘉宾,求所选派的人没有第四组人的概率.

查看答案和解析>>

同步练习册答案