精英家教网 > 高中数学 > 题目详情
8.若f(x)=x2+2(a-1)x+2在区间(4,+∞)上是增函数,那么实数a的取值范围是(  )
A.a≥3B.a≥-3C.a≤-3D.a≤5

分析 根据二次函数的单调性与开口方向和对称轴有关,先求出函数的对称轴,然后结合开口方向可知(4,+∞)是[1-a,+∞)的子集即可.

解答 解:二次函数f(x)=x2+2(a-1)x+2是开口向上的二次函数,
对称轴为x=1-a,
∴二次函数f(x)=x2+2(a-1)x+2在[1-a,+∞)上是增函数,
∵在区间(4,+∞)上是增函数,
∴1-a≤4,
解得:a≥-3.
故选B.

点评 本题主要考查了二次函数的单调性的运用,注意讨论对称轴和区间的关系,二次函数是高考中的热点问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知定义域为R的函数f(x)在区间(4,+∞)上为增函数,且函数y=f(x+4)为偶函数,则(  )
A.f(3)<f(6)B.f(3)<f(5)C.f(2)<f(3)D.f(2)<f(5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=|sin$\frac{π}{4006}$x|,x∈[-2003,2003].
(1)写出满足条件$\frac{1}{2}<$f(x)<$\frac{\sqrt{3}}{2}$的两个整数x值(不要求证明);
(2)若-2003≤x1<x2<x3≤2003,且f(x2)<f(x1)<f(x3),求证x1x3<0且x1+x3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆O:x2+y2=1与圆C:x2+y2-6x-8y+m=0相切于M点,求以M为圆心,且与圆C的半径相等的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|log2x<1},B={y|y=2x,x∈A},则A∩B=(  )
A.(0,2)B.(1,2)C.[0,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}是等差数列,公差d不为零,且a3+a9=a10-a8,则a5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将自行车支起来,使后轮能平稳地匀速运动,观察后轮气针的运动规律?若将后轮入如图所示的坐标系中,轮胎以角速度ωrad/s做圆周运动,P0是气针的初始位置,气针到原点O的距离为rcm,求气针P的纵坐标关于时间t的函数关系式,并求出P的运动周期,当φ=$\frac{π}{6}$,r=ω=1时,作出其函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在四边形ABCD中,根据图示用一个向量填空:
$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{e}$,$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{f}$,$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$=$\overrightarrow{0}$.

查看答案和解析>>

同步练习册答案