精英家教网 > 高中数学 > 题目详情
11.求函数y=$\frac{{x}^{4}+4{x}^{3}+17{x}^{2}+26x+106}{{x}^{2}+2x+7}$的最大值与最小值,其中|x|≤1.

分析 令x2+2x+7=(x+1)2+6=t,求得t的范围6≤t≤10.对分子化为t2-t+64,再由基本不等式可得最小值,求得t=6,10的函数值,可得最大值.

解答 解:令x2+2x+7=(x+1)2+6=t,
由|x|≤1,即为-1≤x≤1,可得0≤(x+1)2≤4,
则6≤t≤10.
x4+4x3+17x2+26x+106=(x4+4x3+4x2)+(13x2+26x+13)+93
=x2(x+2)2+13(x+1)2+93=(x2+2x)2+13(t-6)+93
=(t-6-1)2+13(t-6)+93=t2-t+64,
即有y=$\frac{{t}^{2}-t+64}{t}$=t+$\frac{64}{t}$-1在[6,8]递减,在[8,10]递增,
可得t=8,即x=$\sqrt{2}$-1取得最小值15,t=6,y=$\frac{47}{3}$;t=10,y=$\frac{77}{5}$,
则函数的最大值为$\frac{47}{3}$.

点评 本题考查分式函数的最值的求法,考查换元法的运用以及基本不等式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.水平放置的△ABC,若其BC边与x轴平行,BC=a,其直观图△A′B′C′是以B′C′为斜边的等腰直角三角形,则△ABC的面积为$\frac{\sqrt{2}}{2}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=a-$\frac{2}{x}$,若不等式f(x)<x在区间[c,+∞)(c为正常数)上恒成立,则实数a的取值范围为$\left\{\begin{array}{l}{a<2\sqrt{2}\\;0<c<\sqrt{2}}\\{a<c+\frac{2}{c}\\;c≥\sqrt{2}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.同样大小的正方体木块堆放在房间的一个角落里,如图所示,问这些木块中看不见的木块有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)8的展开式中系数最大的项是(  )
A.第3项B.第4项C.第2或第3项D.第3或第4项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.作出函数y=2x-1的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{a}$、$\overrightarrow{b}$是不共线的向量,$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+μ$\overrightarrow{b}$(λ、μ∈R),当A、B、C三点共线时,λ的取值不可能为(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项Sn=(-1)n•$\frac{1}{n}$,若存在正整数n,使得(an-1-p)•(an-p)<0成立,则实数p的取值范围是$(-1,\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-a|,g(x)=ax(a∈R)
(1)若函数y=f(x)的图象关于y轴对称,求出实数a的值;
(2)若方程f(x)=g(x)有两解,求实数a的取值范围;
(3)若a>0,记F(x)=g(x)•f(x),求函数y=F(x) 在区间[1,2]上的最大值.

查看答案和解析>>

同步练习册答案