精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为

1)写出直线和曲线的直角坐标方程;

2)过动点且平行于的直线交曲线两点,若,求动点到直线的最近距离.

【答案】1)直线;曲线;(2

【解析】

1)运用极坐标和直角坐标的关系,以及两角差的正弦公式,化简可得所求直角坐标方程;

2)设出过且平行于的直线的参数方程,代入抛物线方程,化简整理,运用韦达定理和参数的几何意义,运用点到直线的距离公式和二次函数的最值求法,可得所求最值.

1)直线的极坐标方程为,即为

,可得,即

曲线的极坐标方程为,即为

可得

2)设过点且平行于的直线的参数方程设为为参数),

代入抛物线方程,可得

对应的参数分别为,可得

,即有

,可得,即

到直线的距离:

时,动点到直线的最近距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知多面体中,四边形为菱形,为正四面体,且.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,ac________.(补充条件)

1)求△ABC的面积;

2)求sinA+B.

从①b4,②cosB,③sinA这三个条件中任选一个,补充在上面问题中并作答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020122日,国新办发布消息:新型冠状病毒来源于武汉一家海鲜市场非法销售的野生动.专家通过全基因组比对发现此病毒与2003年的非典冠状病毒以及此后的中东呼吸综合征冠状病毒,分别达到70%40%的序列相似性.这种新型冠状病毒对人们的健康生命带来了严重威胁因此,某生物疫苗研究所加紧对新型冠状病毒疫苗进行实验,并将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:

未感染病毒

感染病毒

总计

未注射疫苗

20

注射疫苗

30

总计

50

50

100

现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为.

1)求列联表中的数据的值;

2)能否有99.9%把握认为注射此种疫苗对预防新型冠状病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,当,则关于函数有如下四个结论:①为偶函数;②的图象关于直线对称;③方程有两个不等实根;④其中所有正确结论的编号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,且交椭圆于AB两点,线段AB的中点是

1)求椭圆的方程;

2)过原点的直线l与线段AB相交(不含端点)且交椭圆于CD两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令,其中是函数的导函数.

(Ⅰ)时,求的极值;

(Ⅱ)时,若存在,使得恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的动直线ly轴交于点,过点T且垂直于l的直线与直线相交于点M.

1)求M的轨迹方程;

2)设M位于第一象限,以AM为直径的圆y轴相交于点N,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,点分别在线段上运动(其中不与重合,不与重合),且,沿折起,得到三棱锥,则三棱锥体积的最大值为______;当三棱锥体积最大时,其外接球的半径______.

查看答案和解析>>

同步练习册答案