精英家教网 > 高中数学 > 题目详情
(2009•湖北模拟)在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答对这道题的概率是
3
4
,甲、丙两人都回答错的概率是
1
12
,乙、丙两人都回答对的概率是
1
4

(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人中恰有两人回答对该题的概率.
分析:记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A、B、C,根据已知的条件求出甲、乙、丙三人各自答对这道题的概率P(A)、P(B)、P(C)的值,
由所求事件的概率 P=P(A•B•
.
C
)+P(A•
.
B
•C)+P(
.
A
•B•C),运算求得结果.
解答:解:记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A、B、C,
则P(A)=
3
4
,且有
P(
.
A
)•P(
.
C
)=
1
12
P(B)•P(C)=
1
4
,即
[1-P(A)]•[1-P(C)]=
1
12
P(B)•P(C)=
1
4

∴P(B)=
3
8
,P(C)=
2
3
.…(6分)
(2)由(1)P(
.
A
)=1-P(A)=
1
4
,P(
.
B
)=1-P(B)=
1
3

则甲、乙、丙三人中恰有两人回答对该题的概率为:P=P(A•B•
.
C
)+P(A•
.
B
•C)+P(
.
A
•B•C)=
3
4
×
3
8
×
1
3
+
3
4
×
5
8
×
2
3
+
1
4
×
3
8
×
2
3
=
15
32
..…(12分)
点评:本题主要考查独立重复试验的概率乘法公式,互斥事件和对立事件,体现了分类讨论的数学思想,求出甲、乙、丙三人各自答对这道题的概率,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•湖北模拟)半径为1的球面上有A、B、C三点,其中点A与B、C两点间的球面距离均为
π
2
,B、C两点间的球面距离均为
π
3
,则球心到平面ABC的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)已知数列{an}满足a1=1,an+1=
1
2
an+n(n为奇数)
an-2n(n为偶数)
且bn=a2n-2(n∈N*
(1)求a2,a3,a4
(2)求证:数列{bn}是等比数列,并求其通项公式;
(3)若Cn=-nbn,Sn为为数列{Cn}的前n项和,求Sn-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)已知命题p:|x|<2,命题q:x2-x-2<0,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,当x1,x2∈[0,3],且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0.则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为x=-6;
③函数y=f(x)在[-9,-6]上为增函数;
④方程f(x)=0在[-9,9]上有4个根.
其中正确命题的序号是
①②④
①②④
.(请将你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y=2x2+1,值域为{9}的“孪生函数”三个:
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”共有(  )

查看答案和解析>>

同步练习册答案