精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且与抛物线y2=x交于A、B两点,若△OAB(O为坐标原点)的面积为2
2
,则椭圆C的方程为(  )
A、
x2
8
+
y2
4
=1
B、
x2
2
+y2=1
C、
x2
12
+
y2
6
=1
D、
x2
12
+
y2
8
=1
考点:椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:由已知得
c
a
=
2
2
4
a2
+
2
b2
=1
a2=b2+c2
,由此能求出椭圆C的方程.
解答: 解:∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)与抛物线y2=x交于A、B两点,
△OAB(O为坐标原点)的面积为2
2

∴设A(x,
x
),B(x,-
x
),x
x
=2
2
,解得x=2,
由已知得
c
a
=
2
2
4
a2
+
2
b2
=1
a2=b2+c2
,解得a=2
2
,b=2,
∴椭圆C的方程为
x2
8
+
y2
4
=1.
故选:A.
点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,注意椭圆的简单性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:12+22+32+…+n2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1
2
,(x≥0)
f(x+1),(x<0)
,若函数g(x)=f(x)+x+a在R上恰有两个相异零点,则实数a的取值范围为(  )
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,0)
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

某流程图如图所示,现输入下列4个函数,则可以输出的函数是(  )
A、f(x)=
|x|
x
B、f(x)=
cosx
x
(-
π
2
<x
π
2
,且x≠0)
C、f(x)=
2′-1
2′+1
D、f(x)=x2ln(x2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-f′(-1)x2-x,则f′(1)等于(  )
A、
2
3
B、-
2
3
C、6
D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=
x
x
,则y′=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,求相应的等差数列{an}的有关求和数
(1)a1=20,an=54,Sn=999,求d及n
(2)d=
1
3
,n=37,Sn=629,求a1及an
(3)a1=
5
6
,d=-
1
6
,Sn=-5,求n及an
(4)d=12,n=15,an=-10,求a1及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(m,2),向量
b
=(2,-3),若
a
b
,则实数m的值是(  )
A、-2
B、3
C、
4
3
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)lnx.
(Ⅰ)若直线y=x+b与f(x)在x=1处相切,求实数a,b的值;
(Ⅱ)若a>0,求证:f(x)存在唯一极小值.

查看答案和解析>>

同步练习册答案