精英家教网 > 高中数学 > 题目详情

【题目】在等比数列{an}中,a1=1,且a2是a1与a3﹣1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 .求数列{bn}的前n项和

【答案】
(1)解:设等比数列{an}的公比为q,

a2是a1与a3﹣1的等差中项,即有a1+a3﹣1=2a2

即为1+q2﹣1=2q,解得q=2,

即有an=a1qn1=2n1


(2)解: =an+

=2n1+( ),

数列{bn}的前n项和 =(1+2+22+…+2n1)+(1﹣ + + +…+

= +1﹣ =2n


【解析】(1)设等比数列{an}的公比为q,运用等差数列的性质和等比数列的通项公式,解方程可得公比q,即可得到所求通项公式;(2)化简bn=2n1+( ),运用分组求和和裂项相消求和,化简即可得到所求和.
【考点精析】利用等比数列的通项公式(及其变式)和数列的前n项和对题目进行判断即可得到答案,需要熟知通项公式:;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高二年级设计了一个实验学科的能力考查方案:考生从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.规定:至少正确完成其中2道题的便可通过该学科的能力考查.已知6道备选题中考生甲能正确完成其中4道题,另2道题不能完成;考生乙正确完成每道题的概率都为.

(Ⅰ)分别求考生甲、乙能通过该实验学科能力考查的概率;

(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为,写出的概率分布列,并求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与抛物线 相交于 两点.当直线的斜率是时, .

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为 ,且椭圆E上一点到两个焦点距离之和为4;l1 , l2是过点P(0,2)且互相垂直的两条直线,l1交E于A,B两点,l2交E交C,D两点,AB,CD的中点分别为M,N.
(1)求椭圆E的方程;
(2)求l1的斜率k的取值范围;
(3)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx.
(1)求函数f(x)的图象在x=1处的切线方程;
(2)若函数y=f(x)+ 在[ ,+∞)上有两个不同的零点,求实数k的取值范围;
(3)是否存在实数k,使得对任意的x∈( ,+∞),都有函数y=f(x)+ 的图象在g(x)= 的图象的下方;若存在,请求出最大整数k的值,若不存在,请说明理由(参考数据:ln2=0.6931, =1.6487).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系;
(1)设M(x,y)是圆C上的动点,求m=3x+4y的取值范围;
(2)求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BC=2, ,若 ,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三条直线3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0围成直角三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P的切线方程;
(2)若f(x)≤0恒成立求m的取值范围;
(3)求函数f(x)在区间[1,e]上最大值.

查看答案和解析>>

同步练习册答案