精英家教网 > 高中数学 > 题目详情

【题目】如图,一隧道内设双行线路,其截面由一长方形和一抛物线构成。为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部(抛物线)在竖直方向上的高度之差至少为0.5m,若行车道总宽度AB6m,请计算通过隧道的车辆的限制高度(精确度为0.1m)

【答案】车辆通过隧道的限制高度是3.2米.

【解析】

根据题意可以建立适当的平面直角坐标系,从而可以得到抛物线的解析式,然后根据要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,可以得到当x=-3时,求出相应的y值,此时汽车的顶部离隧道的顶部距离至少是0.5m,从而可以求得车辆经过隧道时的限制高度是多少米.

取抛物线的顶点为原点,对称轴为y轴,建立直角坐标系,c(4,-4),

设抛物线方程x2=-2pyp>0),将点C代入抛物线方程得p=2,

抛物线方程为x2=-4y,行车道总宽度AB=6m

x=3代入抛物线方程,y=-2.25m

限度为

则车辆通过隧道的限制高度是3.2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在边长都是正整数的三角形中,周长是2009的三角形与周长是2012的三角形哪一种的个数多?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线分别是函数图像上点处的切线,垂直相交于点,则点横坐标的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业团队拟生产两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)

(注:利润与投资额的单位均为万元)

(1)分別将两种产品的利润表示为投资额的函数;

(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个程序框图,则输出的S的值是(

A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣

(1)若a>0,试判断f(x)在定义域内的单调性;

(2)若f(x)在[1,e]上的最小值为,求实数a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,如果存在实数m,n(m<n),使得f(x)的定义域和值域分别是[m,n]和[3m,3n],则m+n=_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求证:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求点C到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案