精英家教网 > 高中数学 > 题目详情
设α、β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
面面平行的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.
因为直线l?α,且l⊥β
所以由判断定理得α⊥β.
所以直线l?α,且l⊥β⇒α⊥β
若α⊥β,直线l?α则直线l⊥β,或直线lβ,或直线l与平面β相交,或直线l在平面β内.
所以“l⊥β”是“α⊥β”成立的充分不必要条件.
故答案为充分不必要.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,E为A1C1的中点,则直线CE垂直于(  )
A.直线ACB.直线B1D1C.直线A1D1D.直线A1A

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中点,F是A1B的中点,
(1)求证:DF平面ABC;
(2)求证:AF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EFAB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(Ⅰ)求证:NC平面MFD;
(Ⅱ)若EC=3,求证:ND⊥FC;
(Ⅲ)求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆O所在平面为α,AB为直径,C是圆周上一点,且PA⊥AC,PA⊥AB,图中直角三角形有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥S-ABC中,△ABC是边长为2
3
的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.
(1)证明:AC⊥SB;
(2)求三棱锥B-CMN的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求异面直线EF与BD所成的角β.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B
(Ⅰ)证明:平面AB1C⊥平面A1BC1
(Ⅱ)设D是A1C1上的点,且A1B平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,ABDC,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.
(1)求证:平面PAC⊥平面PBC;
(2)求二面角A-PB-C的平面角的正切值.

查看答案和解析>>

同步练习册答案