精英家教网 > 高中数学 > 题目详情

(本题满分15分)

    已知函数在x=±1处取得极值

(1)求函数的解析式;

(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有≤4;

(3)若过点A(1,m)(m ≠-2)可作曲线的三条切线,求实数m的范围。

 

【答案】

 

(1)f(x)=x3-3x

(2)略

(3-3<m<-2)

【解析】解:   (1)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,

        即             …………………   2分

        解得a=1,b=0.

        ∴f(x)=x3-3x.           ………………………    4分

   (2)∵f(x)=x3-3x,∴f ′(x)=3x2-3=3(x+1)(x-1),

当-1<x<1时,f ′ (x)<0,故f(x)在区间[-1,1]上为减函数,

fmax(x)=f(-1)=2,fmin(x)=f(1)=-2    ……………………   6分

∵对于区间[-1,1]上任意两个自变量的值x1,x2,

都有|f(x1)-f(x2)|≤|fmax(x) -fmin(x)|

|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4     ………………  8分

   (3)f′(x)=3x2-3=3(x+1)(x-1),

         ∵曲线方程为y=x3-3x,∴点A(1,m)不在曲线上.

设切点为M(x0,y0),则点M的坐标满足

,故切线的斜率为

整理得.

∵过点A(1,m)可作曲线的三条切线,

∴关于x0方程=0有三个实根.   ………………  11分

设g(x­0)= ,则g′(x0)=6

由g′(x0)=0,得x0=0或x0­=1.

∴g(x0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.

∴函数g(x0)= 的极值点为x0=0,x0=1  …………… 13分

∴关于x0方程=0有三个实根的充要条件是

,解得-3<m<-2.

故所求的实数a的取值范围是-3<m<-2.   ……………  15分

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题

(本题满分15分)设函数

(Ⅰ)若函数上单调递增,在上单调递减,求实数的最大值;

(Ⅱ)若对任意的都成立,求实数的取值范围.

注:为自然对数的底数.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题

(本题满分15分)已知直线与曲线相切

1)求b的值;

2)若方程上恰有两个不等的实数根,求

①m的取值范围;

②比较的大小

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题

(本题满分15分)已知抛物线),焦点为,直线交抛物线两点,是线段的中点,

  过轴的垂线交抛物线于点

  (1)若抛物线上有一点到焦点的距离为,求此时的值;

  (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题

(本题满分15分)

已知函数

(1)求的单调区间;

(2)设,若上不单调且仅在处取得最大值,求的取值范围.

 

查看答案和解析>>

同步练习册答案