精英家教网 > 高中数学 > 题目详情

【题目】数据x1,x2,x3,x4,x5的方差是2,则数据x1-1,x2-1,x3-1,x4-1,x5-1的方差是____

【答案】2

【解析】

根据平均数,方差的公式进行计算.

依题意,得x1+x2+x3+x4+x5),

x1﹣1、x2﹣1、x3﹣1、x4﹣1、x5﹣1的平均数为

[(x1﹣1)+(x2﹣1)+(x3﹣1)+(x4﹣1)+(x5﹣1)]

x1+x2+x3+x4+x5)﹣1=1,

∵数据x1x2x3x4x5的方差

S2[(x12+(x22+(x32+(x42+(x52]=2,

∴数据x1﹣1、x2﹣1、x3﹣1、x4﹣1、x5﹣1的方差

S′2[(x1﹣1﹣1)2+(x2﹣1﹣1)2+(x3﹣1﹣1)2+(x4﹣1﹣1)2+(x5﹣1﹣1)2]

[(x12+(x22+(x32+(x42+(x52]=2.

故答案为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

参数数据及公式:.

1)若用线性回归模型拟合yx的关系,求y关于x的线性回归方程;

2)用对数回归模型拟合yx的关系,可得回归方程:,经计算得出线性回归模型和对数模型的分别约为0.750.97,请用说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.

1)设函数,试求的伴随向量

2)记向量的伴随函数为,求当的值;

3)由(1)中函数的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移个单位长度得到的图象,已知,问在的图象上是否存在一点P,使得.若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

(1)若f(x)有两个极值点,求实数m的取值范围:

(2)若函数有且只有三个不同的零点,分别记为x1,x2,x3,设x1<x2<x3,且的最大值是e2,求x1x3的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数有最小正周期,且时,.

(1)求上的解析式;

(2)判断上的单调性,并给予证明;

(3)当为何值时,关于方程上有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数在区间上有最大值4,最小值为0.

1)求函数的解析式;

2)设,若对任意恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线),是双曲线的两个顶点,是双曲线上的一点,且与点在双曲线的同一支上,关于轴的对称点是,若直线的斜率分别是,且,则双曲线的离心率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),其图像与直线相邻两个交点的距离为,若对于任意的恒成立, 则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案