精英家教网 > 高中数学 > 题目详情

如图,正六边形ABCDEF的边长为1,则数学公式=________.


分析:连接DF,BF,利用正六边形的性质和余弦定理即可得出)与的夹角为120°,AC=3,再利用数量积的定义即可得出.
解答:连接DF,BF,则△BDF是等边三角形,∴的夹角为120°,
,即的夹角为120°,
∵AB=1,∴AC2=12+12-2×1×1×cos120°=3,∴AC=3.即
==-
故答案为
点评:熟练掌握正六边形的性质和余弦定理、数量积的定义、向量的夹角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O且PO=1,
(Ⅰ)证明PA⊥BF;
(Ⅱ)求面APB与面DPB所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:
①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有
①④
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为
10
4
.其中正确的有
①④⑤
①④⑤
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知如图,六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论正确的个数是(  )
①CD∥平面PAF   ②DF⊥平面PAF  ③CF∥平面PAB   ④CF∥平面PAD.

查看答案和解析>>

同步练习册答案