精英家教网 > 高中数学 > 题目详情

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,若c=2,sinB=2sinA.

(1)若C=,求a,b的值;

(2)若cosC=,求△ABC的面积.

【答案】(1)a=2,b=4(2)

【解析】试题分析:(1)由已知及正弦定理可得利用余弦定理可求 的值,进而可求 ;(2)由已知利用同角三角函数基本关系式可求 ,又利用余弦定理可解得从而可求利用三角形面积公式计算得解.

试题解析:(1)C=,sinB=2sinA, ∴由正弦定理可得:b=2a ,c=2,∴由余弦定理可得:c2=a2+b2﹣2abcosC,即:12=a2+4a2﹣2a2∴解得:a=2,b=4

(2)cosC=sinC==,又∵b=2a,∴由余弦定理可得:c2=a2+b22abcosC=a2+4a2﹣a2=4a2,解得:c=2a,c=2,可得:a=,b=2SABC=absinC=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点 ,点满足,其中 ,且;圆的圆心轴上,且与点的轨迹相切与点.

(1)求圆的方程;

(2)若点,点是圆上的任意一点,求的取值范围;

(3)过点的两条直线分别与圆交于两点,若直线的斜率互为相反数,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的不等式x2+2ax+40对于一切x∈R恒成立,命题q:x∈11,2], x2-a≥0,若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,过点动直线交与点两点.

(1)若,求直线的倾斜角;

(2)求线段中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系过点的直线与抛物线相交于点两点

1求证:为定值

2是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值如果存在求出该直线方程和弦长如果不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(ab0)的离心率为,且过点(1,).

(I)求椭圆C的方程;

(Ⅱ)设与圆O:x2+y2=相切的直线l交椭圆C与A,B两点,求OAB面积的最大值,及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

(1求函数极值和单调区间

(2)若在区间至少存在一点使得成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

1)求椭圆的标准方程;

2)已知点,和平面内一点),过点任作直线与椭圆相交于两点,设直线的斜率分别为,试求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

同步练习册答案