【题目】设△ABC的内角A,B,C的对边分别为a,b,c,若c=2,sinB=2sinA.
(1)若C=,求a,b的值;
(2)若cosC=,求△ABC的面积.
【答案】(1)a=2,b=4(2)
【解析】试题分析:(1)由已知及正弦定理可得 ,利用余弦定理可求 的值,进而可求 ;(2)由已知利用同角三角函数基本关系式可求 ,又 ,利用余弦定理可解得 ,从而可求 ,利用三角形面积公式计算得解.
试题解析:(1)∵C=,sinB=2sinA, ∴由正弦定理可得:b=2a ,∵c=2,,∴由余弦定理可得:c2=a2+b2﹣2abcosC,即:12=a2+4a2﹣2a2,∴解得:a=2,b=4
(2)∵cosC=,∴sinC==,又∵b=2a,∴由余弦定理可得:c2=a2+b22abcosC=a2+4a2﹣a2=4a2,解得:c=2a,∵c=2,可得:a=,b=2,∴S△ABC=absinC=.
科目:高中数学 来源: 题型:
【题目】已知点, ,点满足,其中, ,且;圆的圆心在轴上,且与点的轨迹相切与点.
(1)求圆的方程;
(2)若点,点是圆上的任意一点,求的取值范围;
(3)过点的两条直线分别与圆交于、两点,若直线、的斜率互为相反数,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,命题q:x∈11,2], x2-a≥0,若p∨q为真,p∧q为假,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,.
(1)求证:为定值;
(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)的离心率为,且过点(1,).
(I)求椭圆C的方程;
(Ⅱ)设与圆O:x2+y2=相切的直线l交椭圆C与A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,和平面内一点(),过点任作直线与椭圆相交于, 两点,设直线, , 的斜率分别为, , , ,试求, 满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线交轴于,且,为坐标原点.
(1)求椭圆的方程;
(2)设是椭圆的上顶点,过点分别作直线交椭圆于,两点,设这两条直线的斜率分别为,且,证明:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com