精英家教网 > 高中数学 > 题目详情
若二次函数f(x)=ax2+bx+c的对称轴为x=1,且其图象过点(2,0),则
f(-1)
f(1)
的值是(  )
分析:先根据已知条件求出a,b,c的值或之间的关系,再代入f(x)=ax2+bx+c对其进行整理;最后代入所求即可得到结论.
解答:解:由条件得:
-
b
2a
=1
f(2)=0
b=-2a
4a+2b+c=0
b=-2a
c=0

所以f(x)=ax2-2ax=ax(x-2).
f(-1)
f(1)
=
a•(-1)•(-1-2)
a•1•(1-2)
=
3a
-a
=-3.
故选:A
点评:本题主要考查二次函数的性质以及函数的值.在解决关于二次函数的题目时,要注意从题中条件中找到对应的结论,比如本题中,由对称轴为x=1得到b=-2a.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若二次函数f(x)=ax2-4x+c的值域为[0,+∞),则
a
c2+4
+
c
a2+4
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=x2+bx+c满足f(2)=f(-2),且函数的f(x)的一个零点为1.
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ)对任意的x∈[
12
,+∞)
,4m2f(x)+f(x-1)≥4-4m2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f (x)=ax2+bx+c(a≠0)的部分对应值如下所示:
x -2 1 3
f (x) 0 -6 0
则不等式f (x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=ax2+bx+1(a,b为实数且x∈R).
(1)若函数f(x)为偶函数,且满足f(x)=2x有两个相等实根,求a,b的值;
(2)若f(-1)=0,且函数f(x)的值域为[0,+∞),求函数f(x)的表达式;
(3)在(2)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若二次函数f(x)=ax2+bx的导函数f′(x)的图象如图所示,则二次函数f(x)的顶点在(  )
A、第四象限B、第三象限C、第二象限D、第一象限

查看答案和解析>>

同步练习册答案